[1] GUO Y, GU S. Multi-label classification using conditional dependency networks[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Jul 16-22, 2011. Menlo Park: AAAI, 2011: 1300-1305.
[2] QIANG L, QIAO M, WEI B, et al. Conditional graphical lasso for multi-label image classification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2977-2986.
[3] JIANG W, YI Y, MAO J, et al. CNN-RNN: a unified framework for multi-label image classification[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2285-2294.
[4] WANG Z, CHEN T, LI G, et al. Multi-label image recognition by recurrently discovering attentional regions[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 464-472.
[5] 雷宏宇. 基于图神经网络的多标签图像识别[D]. 北京:北京化工大学, 2022.
LEI H Y. Multi-label remote sensing image classification based on graph convolutional network[D]. Beijing: Beijing University of Chemical Technology, 2022.
[6] 任炜, 白鹤翔. 基于全局与局部标签关系的多标签图像分类方法[J]. 计算机应用, 2022, 42(5): 1383-1390.
REN W, BAI H X. Multi-label image classification method based on global and local label relationship[J]. Computer Applications, 2022, 42(5): 1383-1390.
[7] GAO B B, ZHOU H Y. Learning to discover multi-class attentional regions for multi-label image recognition[J]. IEEE Transactions on Image Processing, 2021, 30: 5920-5932.
[8] 陈绵书, 于录录, 苏越, 等. 基于卷积神经网络的多标签图像分类[J]. 吉林大学学报(工学版), 2020, 50(3): 1077-1084.
CHEN M S, YU L L, SU Y, et al. Multi-label images classification based on convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(3): 1077-1084.
[9] FENG Z, LI H, OUYANG W, et al. Learning spatial regularization with image-level supervisions for multi-label image classification[EB/OL]. (2017-05-31)[2023-07-22]. https://doi.org/10.48550/arXiv.1702.05891.
[10] DURAND T, MORDAN T, THOME N, et al. WILDCAT: weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5957-5966.
[11] 朱旭东, 熊贇. 基于多层次注意力与图模型的图像多标签分类算法[J]. 计算机工程, 2022, 48(4): 173-178.
ZHU X D, XIONG Z. Multi-label image classification algorithm based on multi-scale attention and graph model[J]. Computer Engineering, 2022, 48(4): 173-178.
[12] ZHU K, WU J. Residual attention: a simple but effective method for multi-label recognition[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 184-193.
[13] EVERINGHAM M, GOOL L V, WILLIAMS C, et al. The Pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338.
[14] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[15] PHAM K, KAFLE K, LIN Z, et al. Learning to predict visual attributes in the wild[EB/OL]. [2023-07-22]. https://doi.org/10.48550/arXiv.2106.09707.
[16] YUN S, HAN D, CHUN S, et al. CutMix: regularization strategy to train strong classifiers with localizable features[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6022-6031.
[17] CHEN T, XU M, HUI X, et al. Learning semantic-specific graph representation for multi-label image recognition[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 522-531.
[18] CHEN Z M, WEI X S, WANG P, et al. Multi-label image recognition with graph convolutional networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 5172-5181.
[19] BEN-BARUCH E, RIDNIK T, ZAMIR N, et al. Asymmetric loss for multi-label classification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 82-91.
[20] LIU Y, SHENG L, SHAO J, et al. Multi-label image classification via knowledge distillation from weakly-supervised detection[C]//Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 700-708.
[21] LI Y, SONG Y, LUO J. Improving pairwise ranking for multi-label image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington:IEEE Computer Society, 2017: 1837-1845.
[22] SARAFIANOS N, XU X, KAKADIARIS I A. Deep imbalanced attribute classification using visual attention aggregation[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8, 2018. Cham: Springer, 2018: 680-697. |