[1] 陈杰虎, 汪西莉. 多图卷积网络的遥感图像小样本分类[J]. 遥感学报, 2022, 26(10): 2029-2042.
CHEN J H, WANG X L. Multi-graph convolutional network for a remote sensing image few shot classification[J]. National Remote Sensing Bulletin, 2022, 26(10): 2029-2042.
[2] 梁敏, 汪西莉. 结合超分辨率和域适应的遥感图像语义分割方法[J]. 计算机学报, 2022, 45(12): 2619-2636.
LIANG M, WANG X L. Semantic segmentation model for remote sensing images combing super resolution and domain adaptation[J]. Chinese Journal of Computers, 2022, 45(12): 2619-2636.
[3] WANG X, LIANG Z Y. Hybrid network model based on 3D convolutional neural network and scalable graph convolutional network for hyperspectral image classification[J]. IET Image Processing, 2022, 17(1): 1-18.
[4] CHEN J H, WANG X L. Open set few-shot remote sensing scene classification based on a multiorder graph convolutional network and domain adaptation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-17.
[5] LIANG M, WANG X L. A bidirectional semantic segmentation method for remote sensing image based on super-resolution and domain adaptation[J]. International Journal of Remote Sensing, 2023, 44: 666-689.
[6] SCHENKEL F, MIDDELMANN W. Domain adaptation for semantic segmentation of aerial imagery using cycle-consistent adversarial networks[C]//Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium, Hawaii, Sep 26-Oct 2, 2020. Piscataway: IEEE, 2020: 1448-1451.
[7] LI Y, SHI T, ZHANG Y, et al. Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 175: 20-33.
[8] CHENG Y, WEI F, BAO J. Dual path learning for domain adaptation of semantic segmentation[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision, Jun 19-25, 2021. Piscataway: IEEE, 2021: 9082-9091.
[9] ZHAO D, YUAN B, GAO Y, et al. UGCNet: an unsupervised semantic segmentation network embedded with geometry consistency for remote-sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
[10] CAI Y, YANG Y, ZHENG Q, et al. BiFDANet: unsupervised bidirectional domain adaptation for semantic segmentation of remote sensing images[J]. Remote Sensing, 2022, 14: 190.
[11] ZHANG P, ZHANG B, ZHANG T, et al. Prototypical pseudo label denoising and target structure learning for domain adaptive semantic segmentation[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 12414-12424.
[12] LI R, LI S, HE C, et al. Class-balanced pixel-level self-labeling for domain adaptive semantic segmentation[C]//Proceedings of the 2022 IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscataway: IEEE, 2022: 11593-11603.
[13] WANG X, LI Y, CHENG Y. Hyperspectral image classification based on unsupervised heterogeneous domain adaptation cycleGAN[J]. Chinese Journal of Electronics, 2020, 29:608-614.
[14] ZHENG J, FU H, LI W, et al. Cross-regional oil palm tree counting and detection via a multi-level attention domain adaptation network[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 154-177.
[15] XU M, WU M, GUO J, et al. Sea fog detection based on unsupervised domain adaptation[J]. Chinese Journal of Aeronautics, 2021, 35: 415-425.
[16] TSAI Y, SOHN K, SCHULTER S, et al. Domain adaptation for structured output via discriminative patch representations[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1456-1465.
[17] VU T, JAIN H, BUCHER M, et al. ADVENT: adversarial entropy minimization for domain adaptation in semantic segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-21, 2019. Piscataway: IEEE, 2019: 2517-2526.
[18] ZHAO Y, GUO P, SUN Z, et al. ResiDualGAN: resize-residual DualGAN for cross-domain remote sensing images semantic segmentation[J]. Remote Sensing, 2023, 15: 1428.
[19] JIN Z C, GONG T, YU D, et al. Mining contextual information beyond image for semantic segmentation[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 7231-7241.
[20] ALONSO I, SABATER A, FERSTL D, et al. Semi-supervised semantic segmentation with pixel-level contrastive learning from a class-wise memory bank[C]//Proceedings of the 2021 IEEE International Conference on Computer Vision, Jun 19-25, 2021. Washington: IEEE Computer Society, 2021: 8219-8228.
[21] ZHU J, GUO Y, SUN G, et al. Unsupervised domain adaptation semantic segmentation of high-resolution remote sensing imagery with invariant domain-level prototype memory[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 1-18.
[22] ZHANG B, CHEN T, WANG B. Curriculum-style local-to-global adaptation for cross-domain remote sensing image segmentation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-12.
[23] ZHOU W, WANG Y, CHU J, et al. Affinity space adaptation for semantic segmentation across domains[J]. IEEE Transactions on Image Processing, 2021, 30: 2549-2561.
[24] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1125-1134.
[25] XU Y, DU B, ZHANG L, et al. Self-ensembling attention networks: addressing domain shift for semantic segmentation[C]//Proceedings of the 2019 Conference on Artificial Intelligence, Hawaii, Jan 27-Feb 1, 2019. Palo Alto: AAAI, 2019: 5581-5588.
[26] DENG X Q, ZHU Y, TIAN Y X. Scale aware adaptation for land-cover classification in remote sensing imagery[C]// Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2021. Piscataway: IEEE, 2021: 2159-2168. |