[1] 张飞, 邵媛, 黄晖, 等. 近20年城市遥感研究现状及其发展趋势[J]. 生态学报, 2021, 41(8): 3255-3276.
ZHANG F, SHAO Y, HUANG H, et al. Research status and development trend of urban remote sensing in the past 20 years[J]. Acta Ecologica Sinica, 2021, 41(8): 3255-3276.
[2] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 3431-3440.
[3] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241.
[4] BADRINARAYANAN V, KENDALL A, CIPOLLA R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
[5] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[EB/OL]. [2023-08-15]. https://arxiv.org/abs/1412.7062.
[6] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848.
[7] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethin-king atrous convolution for semantic image segmentation[EB/OL]. [2023-08-15]. https://arxiv.org/abs/1706.05587.
[8] CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmen-tation[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 801-818.
[9] KAMPFFMEYER M, SALBERG A B, JENSSEN R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 1-9.
[10] ZHAO K, KANG J, JUNG J, et al. Building extraction from satellite images using mask R-CNN with building boundary regularization[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington:IEEE Computer Society, 2018: 247-251.
[11] YI Y, ZHANG Z, ZHANG W, et al. Semantic segmentation of urban buildings from VHR remote sensing imagery using a deep convolutional neural network[J]. Remote Sensing, 2019, 11(15): 1774.
[12] 张春森, 葛英伟, 蒋萧. 基于稀疏约束SegNet的高分辨率遥感影像建筑物提取[J]. 西安科技大学学报, 2020, 40(3): 441-448.
ZHANG C S, GE Y W, JIANG X. Building extraction from high-resolution remote sensing images based on sparse-constrained SegNet[J]. Journal of Xi’an University of Science and Technology, 2020, 40(3): 441-448.
[13] HE N, FANG L, PLAZA A. Hybrid first and second order attention Unet for building segmentation in remote sensing images[J]. Science China Information Sciences, 2020, 63: 1-12.
[14] GUPTA R, SHAH M. RescueNet: joint building segmentation and damage assessment from satellite imagery[C]//Proceedings of the 2020 25th International Conference on Pattern Recognition. Piscataway: IEEE, 2021: 4405-4411.
[15] ABDOLLAHI A, PRADHAN B, SHUKLA N, et al. Multi-object segmentation in complex urban scenes from highresolution remote sensing data[J]. Remote Sensing, 2021, 13(18): 3710.
[16] PRIYANKA, SRAVYA N, LAL S, et al. DIResUNet: architecture for multiclass semantic segmentation of high resolution remote sensing imagery data[J]. Applied Intelligence, 2022, 52(13): 15462-15482.
[17] ZHOU D, HOU Q, CHEN Y, et al. Rethinking bottleneck structure for efficient mobile network design[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 680-697.
[18] YANG M, YU K, ZHANG C, et al. DenseASPP for semantic segmentation in street scenes[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2018: 3684-3692.
[19] HOU Q, ZHANG L, CHENG M M, et al. Strip Pooling: rethin-king spatial pooling for scene parsing[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4003-4012.
[20] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceed-ings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11534-11542.
[21] LIN G, MILAN A, SHEN C, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 1925-1934.
[22] LI H, QIU K, CHEN L, et al. SCAttNet: semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(5): 905-909.
[23] 明兴涛, 杨德宏. 基于多模块的遥感影像建筑物提取方法[J]. 激光与光电子学进展, 2024, 61(4): 0428004.
MING X T, YANG D H. Building extraction from remote sensing image based on multi-module[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0428004.
[24] 李小祥, 黄亮, 朱娟娟, 等. 边缘增强的EDU-Net遥感影像建筑物提取[J]. 遥感信息, 2023, 38(2): 134-141.
LI X X, HUANG L, ZHU J J, et al. Edeg-enhanced EDU-Net for remote sensing image building extraction[J]. Remote Sensing Information, 2023, 38(2): 134-141. |