[1] VOSOUGHI S, ROY D, ARAL S. The spread of true and false news online[J]. Science, 2018, 359(6380): 1146-1151.
[2] BOVET A, MAKSE H A. Influence of fake news in Twitter during the 2016 US presidential election[J]. Nature Communications, 2019, 10: 7.
[3] FAN L D, LU Z X, WU W L, et al. Least cost rumor blocking in social networks[C]//Proceedings of the 2013 IEEE 33rd International Conference on Distributed Computing Systems. Piscataway: IEEE, 2013: 540-549.
[4] YAN R D, LI D Y, WU W L, et al. Minimizing influence of rumors by blockers on social networks: algorithms and analysis[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(3): 1067-1078.
[5] ZHU J M, NI P K, WANG G Q. Activity minimization of misinformation influence in online social networks[J]. IEEE Transactions on Computational Social Systems, 2020, 7(4): 897-906.
[6] TONG G A, WU W L, GUO L, et al. An efficient randomized algorithm for rumor blocking in online social networks[C]//Proceedings of the 2017 IEEE Conference on Computer Communications. Piscataway: IEEE, 2017: 1-9.
[7] WANG S Z, ZHAO X J, CHEN Y, et al. Negative influence minimizing by blocking nodes in social networks[C]//Proceedings of the 17th AAAI Conference on Late-Breaking Developments in the Field of Artificial Intelligence. Palo Alto: AAAI, 2013: 134-136.
[8] XIE J D, ZHANG F, WANG K, et al. Minimizing the influence of misinformation via vertex blocking[C]//Proceedings of the 2023 IEEE 39th International Conference on Data Engineering. Piscataway: IEEE, 2023: 789-801.
[9] 倪培昆, 朱建明, 高玉昕, 等. 在线社交网络中点阻塞策略下虚假信息关注度最小化研究[J]. 计算机学报, 2024, 47(12): 2725-2741.
NI P K, ZHU J M, GAO Y X, et al. Research on minimizing misinformation attention by nodes blocking strategy in online social networks[J]. Chinese Journal of Computers, 2024, 47(12): 2725-2741.
[10] 杨壹, 吴春晓, 何明, 等. 面向社交网络的负面影响最小化算法[J]. 系统仿真学报, 2021, 33(2): 501-508.
YANG Y, WU C X, HE M, et al. Negative influence minimization algorithm for social networks[J]. Journal of System Simulation, 2021, 33(2): 501-508.
[11] WANG J H, WU Y P, WANG X Y, et al. Efficient influence minimization via node blocking[EB/OL]. [2024-07-25]. https://arxiv.org/abs/2405.12871.
[12] HAFIANI K A, HOSNI A I E, BAIRA I, et al. Adaptive approach for rumors influence minimization in dynamic social networks[C]//Proceedings of the 2024 International Conference on Computing Systems and Applications. Cham: Springer, 2024: 361-372.
[13] YANG L, MA Z Y, LI Z W, et al. Rumor containment by blocking nodes in social networks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(7): 3990-4002.
[14] KIMURA M, SAITO K, MOTODA H. Minimizing the spread of contamination by blocking links in a network[C]//Proceedings of the 23rd AAAI Conference on Artificial Intelligence, and the 20th Innovative Applications of Artificial Intelligence Conference. Palo Alto: AAAI, 2008: 1175-1180.
[15] JIA F R, ZHOU K, KAMHOUA C, et al. Blocking adversarial influence in social networks[C]//Proceedings of the 11th International Conference on Decision and Game Theory for Security. Cham: Springer, 2020: 257-276.
[16] YAN R D, LI Y, WU W L, et al. Rumor blocking through online link deletion on social networks[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(2): 1-26.
[17] LIU C G, ZHOU X T, ZEHMAKAN A N, et al. A fast algorithm for moderating critical nodes via edge removal[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(4): 1385-1398.
[18] DEY P, ROY S. Centrality based information blocking and influence minimization in online social network[C]//Proceedings of the 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems. Piscataway: IEEE, 2017: 1-6.
[19] YAO Q P, ZHOU C, XIANG L B, et al. Minimizing the negative influence by blocking links in social networks[C]//Proceedings of the 2015 International Conference on Trustworthy Computing and Services. Cham: Springer, 2015: 65-73.
[20] 倪培昆, 朱建明, 王国庆. 在线社交网络虚假信息交互量最小化的边阻断策略研究[J]. 中国管理科学, 2021, 29(9): 188-200.
NI P K, ZHU J M, WANG G Q. Disinformation diffusion activity minimization by edge blocking in online social networks[J]. Chinese Journal of Management Science, 2021, 29(9): 188-200.
[21] GAO F, HE Q, WANG X W, et al. An efficient rumor suppression approach with knowledge graph convolutional network in social network[J]. IEEE Transactions on Computational Social Systems, 2024, 11(5): 6254-6267.
[22] DONG C, XU G Q, MENG L. CRB: a new rumor blocking algorithm in online social networks based on competitive spreading model and influence maximization[J]. Chinese Physics B, 2024, 33(8): 088901.
[23] HE X R, SONG G J, CHEN W, et al. Influence blocking maximization in social networks under the competitive linear threshold model[C]//Proceedings of the 2012 SIAM International Conference on Data Mining, 2012: 463-474.
[24] HOSNI A I E, LI K, AHMAD S. Minimizing rumor influence in multiplex online social networks based on human individual and social behaviors[J]. Information Sciences, 2020, 512: 1458-1480.
[25] HOSNI A I E, LI K. Minimizing the influence of rumors during breaking news events in online social networks[J]. Knowledge-Based Systems, 2020, 193: 105452.
[26] BUDAK C, AGRAWAL D, ABBADI E A. Limiting the spread of misinformation in social networks[C]//Proceedings of the 20th International Conference on World Wide Web. New York: ACM, 2011: 665-674.
[27] YU L, WANG X H, YU H. Misinformation blocking maximization in online social networks[J]. Multimedia Tools and Applications, 2024, 83(23): 62853-62874.
[28] RAJAK V K, KARE A S. A genetic algorithm-based heuristic for rumour minimization in social networks[C]//Proceedings of the 2024 International Conference on Distributed Computing and Intelligent Technology. Cham: Springer, 2024: 249-265.
[29] 陈梓彦, 袁得嵛, 程佳琳. 在线社交网络竞争信息传播研究与稳定性分析[J]. 情报理论与实践, 2024, 47(8): 150-159.
CHEN Z Y, YUAN D Y, CHENG J L. Research and stability analysis of competitive information dissemination in online social networks[J]. Information Studies (Theory & Application), 2024, 47(8): 150-159.
[30] LESKOVEC J, KRAUSE A, GUESTRIN C, et al. Cost-effective outbreak detection in networks[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007: 420-429.
[31] KEMPE D, KLEINBERG J, TARDOS é. Maximizing the spread of influence through a social network[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2003: 137-146.
[32] CHENG S Q, SHEN H W, HUANG J M, et al. IMRank: influence maximization via finding self-consistent ranking[C]//Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. New York: ACM, 2014: 475-484.
[33] CUNEGATTI E, CUSTODE L, IACCA G. Many-objective evolutionary influence maximization: balancing spread, budget, fairness, and time[C]//Proceedings of the 2024 Genetic and Evolutionary Computation Conference Companion. New York: ACM, 2024: 655-658. |