[1] 孟祥福, 霍红锦, 张霄雁, 等. 个性化新闻推荐方法研究综述[J]. 计算机科学与探索, 2023, 17(12): 2840-2860.
MENG X F, HUO H J, ZHANG X Y, et al. Survey of research on personalized news recommendation approaches[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 2840-2860.
[2] WU C H, WU F Z, QI T, et al. FeedRec: news feed recommendation with various user feedbacks[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 2088-2097.
[3] WU C H, WU F Z, GE S Y, et al. Neural news recommendation with multi-head self-attention[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 6388-6393.
[4] NASERI M, NASERI M, ZAMANI H, et al. Analyzing and predicting news popularity in an instant messaging service[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 1053-1056.
[5] LIAO D, XU J, LI G, et al. Popularity prediction on online articles with deep fusion of temporal process and content features[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence and the 31st Innovative Applications of Artificial Intelligence Conference and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI, 2019: 200-207.
[6] WU C H, WU F Z, AN M X, et al. Neural news recommendation with topic-aware news representation[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 1154-1159.
[7] HU L M, LI C, SHI C, et al. Graph neural news recommendation with long-term and short-term interest modeling[J]. Information Processing & Management, 2020, 57(2): 102142.
[8] MA M Y, NA S, WANG H Y, et al. The graph-based behavior-aware recommendation for interactive news[J]. Applied Intelligence, 2022, 52(2): 1913-1929.
[9] XIE R, LING C, WANG Y, et al. Deep feedback network for recommendation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2021: 2519-2525.
[10] YI X, HONG L J, ZHONG E H, et al. Beyond clicks: dwell time for personalization[C]//Proceedings of the 8th ACM Conference on Recommender Systems. New York: ACM, 2014: 113-120.
[11] XIE R, MA L, ZHANG S, et al. Reweighting clicks with dwell time in recommendation[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 341-345.
[12] JI Z Y, WU M D, YANG H, et al. Temporal sensitive heterogeneous graph neural network for news recommendation[J]. Future Generation Computer Systems, 2021, 125: 324-333.
[13] LI J Y, ZHANG Y, LIN X, et al. TAML: time-aware meta learning for cold-start problem in news recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 2415-2419.
[14] JIANG H, LI C Z, AN M X. Time matters: enhancing pre-trained news recommendation models with robust user dwell time injection[EB/OL]. [2024-11-09]. https://arxiv.org/abs/2405.12486.
[15] WU C, WU F, QI T, et al. User modeling with click preference and reading satisfaction for news recommendation[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 3023-3029.
[16] WU C H, WU F Z, QI T, et al. Quality-aware news recommendation[EB/OL]. [2024-11-09]. https://arxiv.org/abs/2202. 13605.
[17] WU C H, WU F Z, HUANG Y F, et al. Neural news recommendation with negative feedback[J]. CCF Transactions on Pervasive Computing and Interaction, 2020, 2(3): 178-188.
[18] 曹璐, 丁苍峰, 马乐荣, 等. 面向图神经网络的节点重要性排序研究进展[J]. 计算机科学与探索, 2025, 19(4): 877-900.
CAO L, DING C F, MA L R, et al. Advances in node importance ranking based on graph neural networks[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(4): 877-900.
[19] YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 974-983.
[20] DARVISHY A, IBRAHIM H, SIDI F, et al. HYPNER: a hybrid approach for personalized news recommendation[J]. IEEE Access, 2020, 8: 46877-46894.
[21] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174.
[22] QI T, WU F Z, WU C H, et al. HieRec: hierarchical user interest modeling for personalized news recommendation[EB/OL]. [2024-11-10]. https://arxiv.org/abs/2106.04408.
[23] CHEN L, WU L, HONG R C, et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 27-34.
[24] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648.
[25] LIAO J, ZHOU W, LUO F J, et al. SocialLGN: light graph convolution network for social recommendation[J]. Information Sciences, 2022, 589: 595-607.
[26] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 1024-1034.
[27] CHIANG W L, LIU X Q, SI S, et al. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 257-266.
[28] PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(4): 5363-5370.
[29] RAZA S, DING C. A survey on news recommender system-dealing with timeliness, dynamic user interest and content quality, and effects of recommendation on news readers[EB/OL]. [2024-11-10]. https://arxiv.org/abs/2009.04964.
[30] WU C H, WU F Z, HUANG Y F, et al. Personalized news recommendation: methods and challenges[J]. ACM Transactions on Information Systems, 2023, 41(1): 1-50.
[31] WU F Z, QIAO Y, CHEN J H, et al. MIND: a large-scale dataset for news recommendation[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3597-3606.
[32] GULLA J A, ZHANG L, LIU P, et al. The Adressa dataset for news recommendation[C]//Proceedings of the 2017 International Conference on Web Intelligence. New York: ACM, 2017: 1042-1048.
[33] HUANG Z Y, JIN B B, ZHAO H K, et al. Personal or general? A hybrid strategy with multi-factors for news recommendation[J]. ACM Transactions on Information Systems, 2023, 41(2): 1-29.
[34] BAE H K, AHN J, LEE D, et al. LANCER: a lifetime-aware news recommender system[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(4): 4141-4148.
[35] GE S, WU C, WU F, et al. Graph enhanced representation learning for news recommendation[C]//Proceedings of the Web Conference 2020. New York: ACM, 2020: 2863-2869.
[36] MAO Z M, LI J, WANG H R, et al. DIGAT: modeling news recommendation with dual-graph interaction[EB/OL]. [2024-11-10]. https://arxiv.org/abs/2210.05196.
[37] JONNALAGEDDA N, GAUCH S, LABILLE K, et al. Incorporating popularity in a personalized news recommender system[J]. PeerJ Computer Science, 2016, 2: e63.
[38] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-11-12]. https://arxiv.org/abs/1810.04805.
[39] WANG J K, JIANG Y T, LI H C, et al. Improving news recommendation with channel-wise dynamic representations and contrastive user modeling[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 562-570. |