[1] Synopsys. “2025 open source security and risk analysis”report[EB/OL]. [2025-05-09]. https://www.blackduck.com.
[2] LIN G J, WEN S, HAN Q L, et al. Software vulnerability detection using deep neural networks: a survey[J]. Proceedings of the IEEE, 2020, 108(10): 1825-1848.
[3] 苏小红, 郑伟宁, 蒋远, 等. 基于学习的源代码漏洞检测研究与进展[J]. 计算机学报, 2024, 47(2): 337-374.
SU X H, ZHENG W N, JIANG Y, et al. Research and progress on learning-based source code vulnerability detection[J]. Chinese Journal of Computers, 2024, 47(2): 337-374.
[4] ZHOU X, CAO S C, SUN X B, et al. Large language model for vulnerability detection and repair: literature review and the road ahead[J]. ACM Transactions on Software Engineering and Methodology, 2025, 34(5): 1-31.
[5] SHESTOV A, LEVICHEV R, MUSSABAYEV R, et al. Finetuning large language models for vulnerability detection[J]. IEEE Access, 2025, 13: 38889-38900.
[6] CHEN C, SU J Z, CHEN J C, et al. When ChatGPT meets smart contract vulnerability detection: how far are we?[J]. ACM Transactions on Software Engineering and Methodology, 2025, 34(4): 1-30.
[7] PANG Y, LIU X F, HUANG T, et al. Graph-based contract sensing framework for smart contract vulnerability detection[J]. IEEE Transactions on Big Data, 2025. DOI: 10.1109/TBDATA.2025.3594303.
[8] YAMAGUCHI F, GOLDE N, ARP D, et al. Modeling and discovering vulnerabilities with code property graphs[C]//Proceedings of the 2014 IEEE Symposium on Security and Privacy. Piscataway: IEEE, 2014: 590-604.
[9] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
[10] WEN X C, CHEN Y P, GAO C Y, et al. Vulnerability detection with graph simplification and enhanced graph representation learning[C]//Proceedings of the 45th International Conference on Software Engineering. Piscataway: IEEE, 2023: 2275-2286.
[11] MIKOLOV T, CHEN K, CORRADO G S, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the 1st International Conference on Learning Representations, 2013.
[12] RUSSELL R, KIM L, HAMILTON L, et al. Automated vulnerability detection in source code using deep representation learning[C]//Proceedings of the 17th IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE, 2018: 757-762.
[13] YAN H, LUO S L, PAN L M, et al. HAN-BSVD: a hierarchical attention network for binary software vulnerability detection[J]. Computers & Security, 2021, 108: 102286.
[14] HOVSEPYAN A, SCANDARIATO R, JOOSEN W, et al. Software vulnerability prediction using text analysis techniques[C]//Proceedings of the 4th International Workshop on Security Measurements and Metrics. New York: ACM, 2012: 7-10.
[15] BROWN P F, PIETRA V J D, SOUZA P V D, et al. Class-based n-gram models of natural language[J]. Computational Linguistics, 1992, 18(4): 467-479.
[16] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[17] MIKOLOV T, ZWEIG G. Context dependent recurrent neural network language model[C]//Proceedings of the 2012 IEEE Spoken Language Technology Workshop. Piscataway: IEEE, 2012: 234-239.
[18] LI Z, ZOU D Q, XU S H, et al. VulDeePecker: a deep learning-based system for vulnerability detection[C]//Proceedings of the 2018 Network and Distributed System Security Symposium, 2018.
[19] LI Z, ZOU D Q, XU S H, et al. SySeVR: a framework for using deep learning to detect software vulnerabilities[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(4): 2244-2258.
[20] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. [2025-05-09]. https://arxiv.org/abs/1412.3555.
[21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[22] TIAN J F, XING W J, LI Z. BVDetector: a program slice-based binary code vulnerability intelligent detection system[J]. Information and Software Technology, 2020, 123: 106289.
[23] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1724-1734.
[24] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[25] TAO W X, SU X H, KE Y K, et al. Transformer-based statement level vulnerability detection by cross-modal fine-grained features capture[J]. Knowledge-Based Systems, 2025, 316: 113341.
[26] HANIF H, MAFFEIS S. VulBERTa: simplified source code pre-training for vulnerability detection[C]//Proceedings of the 2022 International Joint Conference on Neural Networks. Piscataway: IEEE, 2022: 1-8.
[27] RAHMAN M M, CEKA I, MAO C Z, et al. Towards causal deep learning for vulnerability detection[C]//Proceedings of the 46th IEEE/ACM International Conference on Software Engineering. New York: ACM, 2024: 1-11.
[28] 耿辰, 常舒予, 黄海平. 零样本场景下基于提示工程的智能合约漏洞检测研究[J]. 信息对抗技术, 2024(2): 70-81.
GENG C, CHANG S Y, HUANG H P. Prompt engineering for smart contract vulnerability detection in zero-shot scenarios[J]. Information Countermeasure Technology, 2024(2): 70-81.
[29] DU X Y, ZHENG G, WANG K X, et al. Vul-RAG: enhancing LLM-based vulnerability detection via knowledge-level RAG[EB/OL]. [2025-05-09]. https://arxiv.org/abs/2406.11147.
[30] SIOW J K, LIU S Q, XIE X F, et al. Learning program semantics with code representations: an empirical study[C]//Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering. Piscataway: IEEE, 2022: 554-565.
[31] ZHOU Y Q, LIU S Q, SIOW J, et al. Devign: effective vulnerability identification by learning comprehensive program semantics via graph neural networks[EB/OL]. [2025-05-09]. https://arxiv.org/abs/1909.03496.
[32] LI Y J, TARLOW D, BROCKSCHMIDT M, et al. Gated graph sequence neural networks[EB/OL]. [2025-05-10]. https://arxiv.org/abs/1511.05493.
[33] JIANG B, ZHANG Z Y, LIN D D, et al. Semi-supervised learning with graph learning-convolutional networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 11313-11320.
[34] ZHENG W N, JIANG Y, SU X H. Vu1SPG: vulnerability detection based on slice property graph representation learning[C]//Proceedings of the 32nd IEEE International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2021: 457-467.
[35] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on the Semantic Web. Cham: Springer, 2018: 593-607.
[36] LI M, LI C F, LI S L, et al. ACGVD: vulnerability detection based on comprehensive graph via graph neural network with attention[C]//Proceedings of the 23rd International Conference on the Information and Communications Security. Cham: Springer, 2021: 243-259.
[37] LIU Z Y, ZHOU J. Graph attention networks[M]//Introduction to graph neural networks. Cham: Springer, 2020: 39-41.
[38] GHAFFARIAN S M, SHAHRIARI H R. Neural software vulnerability analysis using rich intermediate graph representations of programs[J]. Information Sciences, 2021, 553: 189-207.
[39] CHAKRABORTY S, KRISHNA R, DING Y, et al. Deep learning based vulnerability detection: are we there yet?[J]. IEEE Transactions on Software Engineering, 2022, 48(9): 3280-3296.
[40] LING M, TANG M, BIAN D, et al. A dual graph neural networks model using sequence embedding as graph nodes for vulnerability detection[J]. Information and Software Technology, 2025, 177: 107581. |