[1] Torre L A, Bray F, Siegel R L, et al. Global cancer statistics, 2012[J]. CA: A Cancer Journal for Clinicians, 2015, 65(2): 87-108.
[2] Ciuti G, Caliò R, Camboni D, et al. Frontiers of robotic endo-scopic capsules: a review[J]. Journal of Micro-Bio Robotics, 2016, 11: 1-18.
[3] Lieberman D A, Rex D K, Winawer S J, et al. Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the US multi-society task force on colorectal cancer[J]. Gastroenterology, 2012, 143(3): 844-857.
[4] Corley D A, Jensen C D, Marks A R, et al. Adenoma detec-tion rate and risk of colorectal cancer and death[J]. New England Journal of Medicine, 2014, 370(14): 1298-1306.
[5] Leufkens A M, Van Oijen M G H, Vleggaar F P, et al. Factors influencing the miss rate of polyps in a back-to-back colo-noscopy study[J]. Endoscopy, 2012, 44(5): 470-475.
[6] Brandao P, Mazomenos E B, Ciuti G, et al. Fully convolu-tional neural networks for polyp segmentation in colonoscopy[C]//Proceedings of the Medical Imaging 2017: Computer-Aided Diagnosis,Orlando, Feb 13-16, 2017. San Francisco: SPIE, 2017: 101340F.
[7] Bernal J, Sánchez F J, Fernández-Esparrach G, et al. WM-DOVA maps for accurate polyp highlighting in colonoscopy: validation vs. saliency maps from physicians[J]. Computerized Medical Imaging and Graphics, 2015, 43: 99-111.
[8] Sasmal P, Iwahori Y, Bhuyan M K, et al. Active contour seg-mentation of polyps in capsule endoscopic images[C]//Pro-ceedings of the 2018 International Conference on Signals and Systems, Bali, May 1-3, 2018. Piscataway: IEEE, 2018: 201-204.
[9] Wang L S, Qian Y, Hu Y X. Segmentation of intestinal polyps via a deep learning algorithm[J]. Gut, 2018, 67(S2).
[10] Nguyen Q, Lee S W. Colorectal segmentation using multiple encoder-decoder network in colonoscopy images[C]//Pro-ceedings of the IEEE 1st International Conference on Arti-ficial Intelligence and Knowledge Engineering, Laguna Hills, Sep 26-28, 2018: 208-211.
[11] Wang P, Xiao X, Brown J R G, et al. Development and valida-tion of a deep-learning algorithm for the detection of polyps during colonoscopy[J]. Nature Biomedical Engineering, 2018, 2(10): 741-748.
[12] Park S, Lee M, Kwak N. Polyp detection in colonoscopy videos using deeply-learned hierarchical features[R]. Seoul National University, 2015.
[13] Xiao W T, Chang L J, Liu W M. Semantic segmentation of colorectal polyps with DeepLab and LSTM networks[C]//Proceedings of the 2018 IEEE International Conference on Consumer Electronics, Taiwan, China, May 19-21, 2018. Piscataway: IEEE, 2018: 1-2.
[14] Elsken T, Metzen J H, Hutter F. Neural architecture search: a survey[J]. Journal of Machine Learning Research, 2019, 20(55): 1-21.
[15] Rother C, Kolmogorov V, Blake A. Interactive foreground extraction using iterated graph cuts[J]. ACM Transactions on Graphics, 2004, 23(3): 309-314.
[16] Yang X P, He X H, Wang Z Y, et al. Non-interaction image segmentation algorithm based on GrabCut[J]. Science Tech-nology and Engineering, 2018, 18(26): 207-212.杨小鹏, 何小海, 王正勇, 等. 基于GrabCut的免交互图像分割算法[J]. 科学技术与工程, 2018, 18(26): 207-212.
[17] Liu C, Xiao Z Y, Du N M. Application of improved convo-lutional neural network in medical image segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1593-1603.刘辰, 肖志勇, 杜年茂. 改进的卷积神经网络在医学图像分割上的应用[J]. 计算机科学与探索, 2019, 13(9): 1593-1603.
[18] Chen L C, Collins M, Zhu Y, et al. Searching for efficient multi-scale architectures for dense image prediction[C]//Pro-ceedings of the 2018 Annual Conference on Neural Infor-mation Processing Systems, Montréal, Dec 3-8, 2018. Cam-bridge: MIT Press, 2018: 8699-8710.
[19] Chollet F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1800-1807.
[20] Zhang X H. Technical study on image processing of laparos-copic scanning[D]. Changchun: Changchun University of Science and Technology, 2010.张晓晖. 腹腔镜扫描图像处理技术性研究[D]. 长春: 长春理工大学, 2010.
[21] Loupas T, McDicken W N, Allan P L. An adaptive weighted median filter for speckle suppression in medical ultrasonic images[J]. IEEE Transactions on Circuits and Systems, 1989, 36(1): 129-135. |