[1] KEMPE D, KLEINBERG J, TARDOS é. Maximizing the spread of influence through a social network[C]//Proceedings of the 9th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Washington, Aug 24-27, 2003. New York: ACM, 2003: 137-146.
[2] GRANOVETTER M. Threshold models of collective behavior[J]. American Journal of Sociology, 1978, 83(6): 1420-1443.
[3] NEWMAN M. Networks: an introduction[M]. Oxford University Press, 2010.
[4] ZUO Y, LIANG Y, BI X D, et al. An inference method of knowledge diffusion network in community question answering sites[J]. Chinese Journal of Computers, 2018, 41(1): 82-97.
左遥, 梁英, 毕晓迪, 等. 社会化问答网站知识传播网络推断方法[J]. 计算机学报, 2018, 41(1): 82-97.
[5] CAI S Q, YUAN Q, ZHOU P. Research on linear threshold diffusion model for negative word-of-mouth under enterprises response[J]. Journal of Systems Engineering, 2017, 32(2): 145-155.
蔡淑琴, 袁乾, 周鹏. 企业响应下负面口碑线性阈值传播模型研究[J]. 系统工程学报, 2017, 32(2): 145-155.
[6] ZHAO J H, WAN K W. Research on the communication dynamics model of social network public opinion based on the SIS model[J]. Information Science, 2017, 35(12): 36-40.
赵剑华, 万克文. 基于信息传播模型-SIR传染病模型的社交网络舆情传播动力学模型研究[J]. 情报科学, 2017, 35(12): 36-40.
[7] PAN Y, CONG F, CHEN K L, et al. Diffusion-aware personalized social update recommendation[C]//Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, Oct 12-16, 2013. New York: ACM, 2013: 69-76.
[8] ZHANG Q, GONG Y Y, GUO Y, et al. Retweet behavior prediction using hierarchical dirichlet process[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 403-409.
[9] BIAN J W, YANG Y, CHUA T S. Predicting trending messages and diffusion participants in microblogging network[C]//Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast, Jul 6-11, 2014. New York: ACM, 2014: 537-546.
[10] LUO Z C, OSBORNE M, TANG J T, et al. Who will retweet me?: finding retweeters in twitter[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Jul 28-Aug 1, 2013. New York: ACM, 2013: 869-872.
[11] JUNG K, HEO W, CHEN W. IRIE: scalable and robust influence maximization in social networks[C]//Proceedings of the 12th IEEE International Conference on Data Mining, Brussels, Dec 10-13, 2012. Washington: IEEE Computer Society, 2012: 918-923.
[12] GOYAL A, LU W, LAKSHMANAN L V S. Simpath: an efficient algorithm for influence maximization under the linear threshold model[C]//Proceedings of the 11th IEEE International Conference on Data Mining, Vancouver, Dec 11-14, 2011. Washington: IEEE Computer Society, 2011: 211-220.
[13] TANG Y Z, XIAO X K, SHI Y C. Influence maximization: near-optimal time complexity meets practical efficiency[C]// Proceedings of the 2014 International Conference on Management of Data, Utah, Jun 22-27, 2014. New York: ACM, 2014: 75-86.
[14] COHEN E, DELLING D, PAJOR T, et al. Sketch-based influence maximization and computation: scaling up with guarantees[C]//Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, Shanghai, Nov 3-7, 2014. New York: ACM, 2014: 629-638.
[15] SHANG J X, ZHOU S B, LI X, et al. CoFIM: a community-based framework for influence maximization on large-scale networks[J]. Knowledge-Based Systems, 2017, 117: 88-100.
[16] LI X, CHENG X, SU S, et al. Community-based seeds selection algorithm for location aware influence maximization[J]. Neurocomputing, 2018, 275: 1601-1613.
[17] SINGH K, BHOLA S, LEE W. xBook: redesigning privacy control in social networking platforms[C]//Proceedings of the 18th USENIX Security Symposium, Montreal, Aug 10-14, 2009. Berkeley: USENIX, 2009: 249-266.
[18] AIELLO L M, RUFFO G. LotusNet: tunable privacy for distributed online social network services[J]. Computer Communications, 2012, 35(1): 75-88.
[19] YAN Z, WANG M J. Protect pervasive social networking based on two-dimensional trust levels[J]. IEEE Systems Jour-nal, 2014, 11(1): 207-218.
[20] LI N, YAN Z, WANG M, et al. Securing communication data in pervasive social networking based on trust with KP-ABE[J]. ACM Transactions on Cyber-Physical Systems, 2018, 3(1): 1-23.
[21] CHENG J, ADAMIC L A, DOW P A, et al. Can cascades be predicted?[C]//Proceedings of the 23rd International World Wide Web Conference, Seoul, Apr 7-11, 2014. New York: ACM, 2014: 925-936. |