[1] RiSing. 2019 China information security report[EB/OL]. [2020-04-28]. http://it.rising.com.cn/dongtai/19507.html.
瑞星. 2019年上半年中国网络安全报告[EB/OL]. [2020-04-28]. http://it.rising.com.cn/dongtai/19507.html.
[2] MOSER A, KRüGEL C, KIRDA E. Exploring multiple execution paths for malware analysis[C]//Proceedings of the 2007 IEEE Symposium on Security and Privacy, Oakland, May 20-23, 2007. Washington: IEEE Computer Society, 2007: 231-245.
[3] SEBASTIO S, BARANOV E, BIONDI F, et al. Optimizing symbolic execution for malware behavior classification[J]. Computers & Security, 2020, 93: 101775.
[4] FARHADI M R, FUNG B C M, CHARLAND P, et al. BinClone: detecting code clones in malware[C]//Proceedings of the 8th International Conference on Software Security and Reliability, San Francisco, Jun 30-Jul 2, 2014. Piscataway: IEEE, 2014: 78-87.
[5] GAO D B, REITER M K, SONG X D. BinHunt: automatically finding semantic differences in binary programs[C]//LNCS 5308: Proceedings of the 10th International Conference on Information and Communications Security, Birmingham, Oct 20-22, 2008. Berlin, Heidelberg: Springer, 2008: 238-255.
[6] GUO Y T, FAN W Q. Feature collection and selection in malware classification[C]//Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing, Dublin, Oct 17-19, 2019. New York: ACM, 2019: 1-5.
[7] NATARAJ L, KARTHIKEYAN S, JACOB G, et al. Malware images: visualization and automatic classification[C]//Proceedings of the 2011 International Symposium on Visualization for Cyber Security, Pittsburgh, Jul 20, 2011. New York:ACM, 2011: 4.
[8] AHMADI M, ULYANOV D, SEMENOV S, et al. Novel feature extraction, selection and fusion for effective malware family classification[C]//Proceedings of the 6th ACM Conference on Data and Application Security and Privacy, New Orleans, Mar 9-11, 2016. New York: ACM, 2016: 183-194.
[9] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1106-1114.
[10] HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97.
[11] YU B, XU Z B, LI C H. Latent semantic analysis for text categorization using neural network[J]. Knowledge Based Systems, 2008, 21(8): 900-904.
[12] LONG T Y, WAN L, DING H W. Application research of autoencoder network in malicious JavaScript code detection[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(12): 2073-2084.
龙廷艳, 万良, 丁红卫. 自编码网络在JavaScript恶意代码检测中的应用研究[J]. 计算机科学与探索, 2019, 13(12): 2073-2084.
[13] CUI Z H, XUE F, CAI X J, et al. Detection of malicious code variants based on deep learning[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3187-3196.
[14] VASAN D, ALAZAB M, WASSAN S, et al. Image-based malware classification using ensemble of CNN architectures (IMCEC)[J]. Computers & Security, 2020, 92: 101748.
[15] NI S, QIAN Q, ZHANG R. Malware identification using visualization images and deep learning[J]. Computers & Security, 2018, 77: 871-885.
[16] WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6450-6458.
[17] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436.
[18] GU J X, WANG Z H, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
[19] LIN Z, FENG M, SANTOS C N, et al. A structured self-attentive sentence embedding[J]. arXiv:1703.03130, 2017.
[20] HEAVEN V X. VX Heaven virus collection[EB/OL]. [2020-04-28]. http://vxheaven.org.
[21] VYAS R, LUO X, MCFARLAND N, et al. Investigation of malicious portable executable file detection on the network using supervised learning techniques[C]//Proceedings of the 2017 IFIP/IEEE Symposium on Integrated Network and Service Management, Lisbon, May 8-12, 2017. Piscataway:IEEE, 2017: 941-946.
[22] DAM K H T, TOUILI T. Learning malware using generalized graph kernels[C]//Proceedings of the 13th International Conference on Availability, Reliability and Security, Hamburg, Aug 27-30, 2018. New York: ACM, 2018: 1-6.
[23] DOVOM E M, AZMOODEH A, DEHGHANTANHA A, et al. Fuzzy pattern tree for edge malware detection and categorization in IoT[J]. Journal of Systems Architecture: Embedded Software Design, 2019, 97: 1-7.
[24] GOEL S, BAYKAL A, PON D. Botnets: the anatomy of a case[J]. Journal of Information Systems Security, 2006, 1(3): 1-12.
[25] GARCíA-CERVIGóN M, LLINàS M M. Browser function calls modeling for banking malware detection[C]//Proceedings of the 7th International Conference on Risks and Security of Internet and Systems, Cork, Oct 10-12, 2012. Washington: IEEE Computer Society, 2012: 1-7. |