[1] WANG H, ABAJOBIR A A, ABATE K H, et al. Global, re-gional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: a syste-matic analysis for the global burden of disease study 2016[J]. The Lancet, 2017, 390(10100): 1084-1150.
[2] CURY R C, ABBARA S, ACHENBACH S, et al. Coronary artery disease-reporting and data system (CAD-RADS): an expert consensus document of SCCT, ACR and NASCI: endorsed by the ACC[J]. JACC: Cardiovascular Imaging, 2016, 9(9): 1099-1113.
[3] DEWEY M, RUTSCH W, SCHNAPAUFF D, et al. Coronary artery stenosis quantification using multislice computed to-mography[J]. Investigative Radiology, 2007, 42(2): 78-84.
[4] LI L H, HUANG Y S, YANG R Q, et al. Segmentation of coronary artery from dual-source CT images[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2012, 16(39): 7298-7301.
黎丽华, 黄岳山, 杨荣骞, 等. 基于双源CT图像的冠状动脉分割[J]. 中国组织工程研究, 2012, 16(39): 7298-7301.
[5] CAI K, YANG R Q, LI L H, et al. A semi-automatic coronary artery segmentation framework using mechanical simulation[J]. Journal of Medical Systems, 2015, 39(10): 1-7.
[6] HERNANDEZ M, FRANGI A F. Non-parametric geodesic active regions: method and evaluation for cerebral aneurysms segmentation in 3DRA and CTA[J]. Medical Image Analysis, 2007, 11(3): 224-241.
[7] LACOSTE C, FINET G, MAGNIN I E. Coronary tree extrac-tion from X-ray angiograms using marked point processes[C]//Proceedings of the 2006 IEEE International Sympo-sium on Biomedical Imaging: From Nano to Macro, Arlin-gton, Apr 6-9, 2006. Piscataway: IEEE, 2006: 157-160.
[8] ZHAO J, GONG W K, JIANG S Z, et al. Automatic segmen-tation and reconstruction of coronary arteries based on sphere model and Hessian matrix using CCTA images[J]. Journal of Physics: Conference Series, 2019, 1213(4): 042049.
[9] KRIZHEVSKY A, SUTSKEVER I, HINTON G E, et al. ImageNet classification with deep convolutional neural net-works[C]//Proceedings of the 26th Neural Information Pro-cessing Systems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1097-1105.
[10] WANG Z, YIN Y X, SHI J P, et al. Zoom-in-net: deep mining lesions for diabetic retinopathy detection[C]//LNCS 10435: Proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Interven-tion, Quebec, Sep 11-13, 2017. Berlin, Heidelberg: Springer, 2017: 267-275.
[11] CIRESAN D C, GIUSTI A, GAMBARDELLA L M, et al. Deep neural networks segment neuronal membranes in elec-tron microscopy images[C]//Proceedings of the 25th Inter-national Conference on Neural Information Processing Sys-tems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Asso-ciates, 2012: 2843-2851.
[12] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 33rd IEEE Conference on Computer Vision and Pattern Re-cognition, Boston, Jun 7-12, 2015. Washington: IEEE Com-puter Society, 2015: 3431-3440.
[13] RONNEBERGER O, FISCHER P, BROX T, et al. U-Net: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Con-ference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Berlin, Heidelberg: Springer, 2015: 234-241.
[14] FU H Z, CHENG J, XU Y W, et al. Joint optic disc and cup segmentation based on multi-label deep network and polar transformation[J]. IEEE Transactions on Medical Imaging, 2018, 37(7): 1597-1605.
[15] GIBSON E, GIGANTI F, HU Y, et al. Automatic multi-organ segmentation on abdominal CT with dense V-Networks[J]. IEEE Transactions on Medical Imaging, 2018, 37(8): 1822-1834.
[16] GU Z, CHENG J, FU H, et al. CE-Net: context encoder net-work for 2D medical image segmentation[J]. IEEE Trans-actions on Medical Imaging, 2019, 38(10): 2281-2292.
[17] ROTH H R, ODA H, HAYASHI Y, et al. Hierarchical 3D fully convolutional networks for multi-organ segmentation[J]. arXiv:1704.06382, 2017.
[18] ?I?EK ?, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//LNCS 9901: Proceedings of the 19th Inter-national Conference on Medical Image Computing and Computer-Assisted Intervention, Athens, Oct 17-21, 2016. Berlin, Heidelberg: Springer, 2016: 424-432.
[19] MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//Proceedings of the 4th International Con-ference on 3D Vision, Stanford, Oct 25-28, 2016. Wash-ington: IEEE Computer Society, 2016: 565-571.
[20] MA G, YANG J, HUANG Y, et al. A novel automatic coro-nary artery segmentation method based on region growing with annular and spherical sector partition[J]. Journal of Me-dical Imaging and Health Informatics, 2019, 9(1): 148-152.
[21] GE S, SHI Z F, PENG G M, et al. Two-steps coronary artery segmentation algorithm based on improved level set model in combination with weighted shape-prior constraints[J]. Journal of Medical Systems, 2019, 43(7): 1-10.
[22] CHEN Y C, LIN Y C, WANG C P, et al. Coronary artery segmentation in cardiac CT angiography using 3D multi-channel U-net[J]. arXiv:1907.12246, 2019.
[23] WOLTERINK J M, LEINER T, I?GUM I. Graph convolu-tional networks for coronary artery segmentation in cardiac CT angiography[C]//LNCS 11849: Proceedings of the 1st International Workshop on Graph Learning in Medical Imaging, Shenzhen, Oct 17, 2019. Berlin, Heidelberg: Spr-inger, 2019: 62-69.
[24] FU Y, GUO B J, LEI Y, et al. Mask R-CNN based coronary artery segmentation in coronary computed tomography ang-iography[C]//Proceedings of the 1st International Confer-ence on Medical Imaging and Computer-Aided Diagnosis, Oxford, Jan 20-21, 2020. Berlin, Heidelberg: Springer, 2020, 11314: 113144F.
[25] KONG B, WANG X, BAI J, et al. Learning tree-structured representation for 3D coronary artery segmentation[J]. Com-puterized Medical Imaging and Graphics, 2020, 80: 101688.
[26] BLAIECH A G, MANSOUR A, KERKENI A, et al. Impact of enhancement for coronary artery segmentation based on deep learning neural network[C]//LNCS 11868: Proceedings of the 9th Iberian Conference on Pattern Recognition and Image Analysis, Madrid, Jul 1-4, 2019. Berlin, Heidelberg: Springer, 2019: 260-272.
[27] WANG L, LIANG D, YIN X, et al. Coronary artery seg-mentation in angiographic videos using A 3D-2D CE-Net[J]. arXiv:2003.11851, 2020.
[28] DOU Q, CHEN H, JIN Y M, et al. 3D deeply supervised network for automatic liver segmentation from CT volumes[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Interven-tion, Istanbul, Oct 17-21, 2016. Berlin, Heidelberg: Springer, 2016: 149-157.
[29] ZHENG Y C, GENG C, SONG S, et al. Novel 3D coronary artery extraction method using hierarchical clustering of spherical operator[J]. Journal of Image and Graphics, 2014, 19(8): 1219-1227.
郑永昌, 耿辰, 宋爽, 等. 应用球形算子层次聚类的3维冠脉跟踪提取[J]. 中国图象图形学报, 2014, 19(8): 1219-1227.
[30] LIU B, GU L, LU F. Unsupervised ensemble strategy for retinal vessel segmentation[C]//LNCS 11764: Proceedings of the 22nd International Conference on Medical Image Com-puting and Computer-Assisted Intervention, Shenzhen, Oct 13-17, 2019. Berlin, Heidelberg: Springer, 2019: 111-119.
[31] YU Q H, YANG D, ROTH H, et al. C2FNAS: coarse-to-fine neural architecture search for 3D medical image seg-mentation[C]//Proceedings of the 2020 IEEE/CVF Confer-ence on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4125-4134.
[32] FANG Y Q, CHEN C, YUAN Y X, et al. Selective feature aggregation network with area-boundary constraints for polyp segmentation[C]//LNCS 11764: Proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, Shenzhen, Oct 13-17, 2019. Berlin, Heidelberg: Springer, 2019: 302-310.
[33] YU F, ZHAO J, GONG Y J, et al. Annotation-free cardiac vessel segmentation via knowledge transfer from retinal images[C]//LNCS 11765: Proceedings of the 22nd Interna-tional Conference on Medical Image Computing and Com-puter-Assisted Intervention, Shenzhen, Oct 13-17, 2019. Berlin, Heidelberg: Springer, 2019: 714-722.
[34] ZHANG S H, FU H Z, YAN Y G, et al. Attention guided network for retinal image segmentation[C]//LNCS 11764: Proceedings of the 22nd International Conference on Med-ical Image Computing and Computer-Assisted Intervention, Shenzhen, Oct 13-17, 2019. Berlin, Heidelberg: Springer, 2019: 797-805.
[35] HUANG C, HAN H, YAO Q S, et al. 3D U2-Net: a 3D universal U-Net for multi-domain medical image segmen-tation[C]//LNCS 11765: Proceedings of the 22nd Interna-tional Conference on Medical Image Computing and Com-puter-Assisted Intervention, Shenzhen, Oct 13-17, 2019. Berlin, Heidelberg: Springer, 2019: 291-299. |