[1] LEE K H, HWANG J N. On-road pedestrian tracking across multiple driving recorders[J]. IEEE Transactions on Multi-media, 2015, 17(9): 1429-1438.
[2] TANG S Y, ANDRILUKA M, ANDRES B, et al. Multiple people tracking by lifted multicut and person re-identifica-tion[C]//Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3701-3710.
[3] LUCAS B D, KANADE T. An iterative image registration technique with an application to stereo vision[C]//Procee-dings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, Aug 24-28, 1981: 674-679.
[4] JIANG B R, LUO R X, MAO J Y, et al. Acquisition of loca-lization confidence for accurate object detection[C]//LNCS 11218: Proceedings of the 15th European Conference on Com-puter Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 816-832.
[5] ZHU Z, HUANG G, ZOU W, et al. UCT: learning unified convolutional networks for real-time visual tracking[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 1973-1982.
[6] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filter[C]//Procee-dings of the 2010 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, Jun 13-18, 2010. Washington: IEEE Computer Society, 2010: 2544-2550.
[7] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 583-596.
[8] DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//LNCS 9909: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 472-488.
[9] BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//LNCS 9914: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10 and 15-16, 2016. Berlin, Heidelberg: Springer, 2016: 850-865.
[10] CHEN K, TAO W. Once for all: a two-flow convolutional neural network for visual tracking[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 28(12): 3377-3386.
[11] HELD D, THRUN S, SAVARESE S. Learning to track at 100 fps with deep regression networks[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Berlin, Heidelberg: Springer, 2016: 749-765.
[12] LECUN Y, BOSER B E, DENKER J S, et al. Backpropaga-tion applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551.
[13] DANELLJAN M, BHAT G, KHAN F S, et al. Atom: accu-rate tracking by overlap maximization[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4660-4669.
[14] ZHOU P, NI B B, GENG C, et al. Scale-transferrable object detection[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 528-537.
[15] GIRSHICK R B, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587.
[16] REN S Q, HE K M, GIRSHICK R B, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th Annual Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99.
[17] WU Y, LIM J, YANG M H. Online object tracking: a bench-mark[C]//Proceedings of the 2013 IEEE Conference on Com-puter Vision and Pattern Recognition, Portland, Jun 23-28, 2013. Washington: IEEE Computer Society, 2013: 2411-2418.
[18] KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking VOT2016 challenge results[C]//LNCS 9914: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10 and 15-16, 2016. Berlin, Heidelberg: Springer, 2016: 777-823.
[19] KRISTAN M, LEONARDIS A, MATAS J, et al. The sixth visual object tracking VOT2018 challenge results[C]//LNCS 11129: Proceedings of the 15th European Conference on Com-puter Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 3-53.
[20] FAN H, LIN L T, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//Procee-dings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Pis-cataway: IEEE, 2019: 5374-5383.
[21] LIPTON Z C, BERKOWITZ J, ELKAN C. A critical review of recurrent neural networks for sequence learning[J]. arXiv:1506.00019, 2015.
[22] LI B, YAN J J, WU W, et al. High performance visual tracking with siamese region proposal network[C]//Procee-dings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8971-8980.
[23] HOCHREITER S, SCHMIDHUBER J. Long short-term me-mory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[24] CHO K, VAN MERRI?NBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014.
[25] KOMBRINK S, MIKOLOV T, KARAFIáT M, et al. Recu-rrent neural network based language modeling in meeting recognition[C]//Proceedings of the 12th Annual Conference of the International Speech Communication Association, Florence, Aug 27-31, 2011: 2877-2880.
[26] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequ-ence learning with neural networks[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 3104-3112.
[27] GAN Q, GUO Q, ZHANG Z, et al. First step toward model-free, anonymous object tracking with recurrent neural net-works[J]. arXiv:1511.06425, 2015.
[28] KAHOU S E, MICHALSKI V, MEMISEVIC R, et al. RATM: recurrent attentive tracking model[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1613-1622.
[29] REDMON J, DIVVALA S K, GIRSHICK R B, et al. You only look once: unified, real-time object detection[C]//Pro-ceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Wa-shington: IEEE Computer Society, 2016: 779-788.
[30] NING G H, ZHANG Z, HUANG C, et al. Spatially super-vised recurrent convolutional neural networks for visual object tracking[C]//Proceedings of the 2017 IEEE Interna-tional Symposium on Circuits and Systems, Baltimore, May 28-31, 2017. Piscataway: IEEE, 2017: 1-4.
[31] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Image-Net classification with deep convolutional neural networks[C]//Proceedings of the 26th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 3-6, 2012. Red Hook: Curran Associates, 2012: 1097-1105.
[32] SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation now-casting[C]//Proceedings of the 28th Annual Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 802-810.
[33] HUANG L H, ZHAO X, HUANG K Q. GOT-10k: a large high-diversity benchmark for generic object tracking in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019.
[34] DANELLJAN M, BHAT G, KHAN F S, et al. ECO: effi-cient convolution operators for tracking[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6931-6939.
[35] NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 4293-4302.
[36] SUN C, WANG D, LU H C, et al. Learning spatial-aware regressions for visual tracking[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recogni-tion, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8962-8970.
[37] FAN H, LING H B. Parallel tracking and verifying: a frame-work for real-time and high accuracy visual tracking[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5486-5495.
[38] SONG Y B, MA C, GONG L J, et al. CREST: convolu-tional residual learning for visual tracking[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Com-puter Society, 2017: 2555-2564.
[39] BERTINETTO L, VALMADRE J, GOLODETZ S, et al. Staple: complementary learners for real-time tracking[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 1401-1409.
[40] WANG Q, ZHANG L, BERTINETTO L, et al. Fast online object tracking and segmentation: a unifying approach[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1328-1338.
[41] ZHANG Z P, PENG H W. Deeper and wider siamese net-works for real-time visual tracking[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Re-cognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4591-4600.
[42] NAM H, BAEK M, HAN B. Modeling and propagating CNNs in a tree structure for visual tracking[J]. arXiv:1608. 07242, 2016.
[43] XU T Y, FENG Z H, WU X J, et al. Learning adaptive discriminative correlation filters via temporal consistency preserving spatial feature selection for robust visual object tracking[J]. IEEE Transactions on Image Processing, 2019, 28(11): 5596-5609.
[44] LI B, WU W, WANG Q, et al. SiamRPN++: evolution of siamese visual tracking with very deep networks[C]//Pro-ceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4282-4291.
[45] ZHANG P, YU S J, XU J M, et al. Robust visual tracking using multi-frame multi-feature joint modeling[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 29(12): 3673-3686.
[46] BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the power of deep tracking[C]//LNCS 11206: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 493-509.
[47] SUN C, WANG D, LU H C, et al. Correlation tracking via joint discrimination and reliability learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 489-497.
[48] ZHU Z, WANG Q, LI B, et al. Distractor-aware siamese networks for visual object tracking[C]//LNCS 11213: Pro-ceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 103-119.
[49] HUANG L, ZHAO X, HUANG K. GlobalTrack: a simple and strong baseline for long-term tracking[J]. arXiv:1912. 08531, 2019.
[50] ZHANG Y, WANG D, WANG L, et al. Learning regression and verification networks for long-term visual tracking[J]. arXiv:1809.04320, 2018.
[51] YAN B, ZHAO H J, WANG D, et al. ‘Skimming-Perusal’ tracking: a framework for real-time and robust long-term tracking[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2385-2393.
[52] SONG Y B, MA C, WU X H, et al. Vital: visual tracking via adversarial learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 8990-8999. |