[1] JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
[2] ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algo-rithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765-2781.
[3] FODOR I K. A survey of dimension reduction techniques[R]. Livermore: Lawrence Livermore National Laboratory, 2002: 1-18.
[4] HE X F, CAI D, NIYOGI P. Laplacian score for feature sele-ction[C]//Proceedings of the 18th Advances in Neural Infor-mation Processing Systems, Vancouver, Dec 5-8, 2005. Red Hook: Curran Associates, 2005: 507-514.
[5] HUANG D, CAI X S, WANG C D. Unsupervised feature selec-tion with multi-subspace randomization and collaboration[J]. Knowledge-Based Systems, 2019, 182: 104856.
[6] TIAN F, GAO B, CUI Q, et al. Learning deep representa-tions for graph clustering[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1293-1299.
[7] YANG J W, PARIKH D, BATRA D. Joint unsupervised lear-ning of deep representations and image clusters[C]//Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 5147-5156.
[8] CHEN G. Deep learning with nonparametric clustering[J]. arXiv:1501.03084, 2015.
[9] PENG X, XIAO S J, FENG J S, et al. Deep subspace cluster-ing with sparsity prior[C]//Proceedings of the 25th Interna-tional Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 1925-1931.
[10] LIN X, YANG X, LI Y. A deep clustering algorithm based on Gaussian mixture model[J]. Journal of Physics: Conference Series, 2019, 1302(3): 032012.
[11] YANG L X, CHEUNG N M, LI J Y, et al. Deep clustering by Gaussian mixture variational autoencoders with graph embedding[C]//Proceedings of the 2019 IEEE/CVF Interna-tional Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6439-6448.
[12] XIE J Y, GIRSHICK R B, FARHADI A. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 478-487.
[13] STREHL A, GHOSH J. Cluster ensembles—a knowledge reuse framework for combining multiple partitions[J]. Journal of Machine Learning Research, 2002, 3: 583-617.
[14] FRED A L N, JAIN A K. Combining multiple clusterings using evidence accumulation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6): 835-850.
[15] JING L P, TIAN K, HUANG J Z. Stratified feature samp-ling method for ensemble clustering of high dimensional data[J]. Pattern Recognition, 2015, 48(11): 3688-3702.
[16] SHI Q Y, LIANG J Y, ZHAO X W. A clustering ensemble algorithm for incomplete mixed data[J]. Journal of Computer Research and Development, 2016, 53(9): 1979-1989.
史倩玉, 梁吉业, 赵兴旺. 一种不完备混合数据集成聚类算法[J]. 计算机研究与发展, 2016, 53(9): 1979-1989.
[17] HUANG D, LAI J H, WANG C D. Robust ensemble clus-tering using probability trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(5): 1312-1326.
[18] HUANG D, LAI J, WANG C D. Ensemble clustering using factor graph[J]. Pattern Recognition, 2016, 50: 131-142.
[19] HUANG D, WANG C D, LAI J H. Locally weighted ens-emble clustering[J]. IEEE Transactions on Cybernetics, 2018, 48(5): 1460-1473.
[20] HUANG D, WANG C D, PENG H, et al. Enhanced ensemble clustering via fast propagation of cluster-wise similarities[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(1): 508-520.
[21] YOUSEFNEZHAD M, HUANG S J, ZHANG D Q. WoCE: a framework for clustering ensemble by exploiting the wisdom of crowds theory[J]. IEEE Transactions on Cybernetics, 2018, 48(2): 486-499.
[22] ZHANG H S, GAO Y K, CHEN Y P, et al. Clustering ensemble algorithm with cluster connection based on wisdom of crowds[J]. Journal of Computer Research and Develop-ment, 2018, 55(12): 2611-2619.
张恒山, 高宇坤, 陈彦萍, 等. 基于群体智慧的簇连接聚类集成算法[J]. 计算机研究与发展, 2018, 55(12): 2611-2619.
[23] HUANG D, WANG C D, WU J S, et al. Ultra-scalable spectral clustering and ensemble clustering[J]. IEEE Transa-ctions on Knowledge and Data Engineering, 2020, 32(6): 1212-1226.
[24] BAI L, LIANG J Y, DU H Y, et al. An information-theoretical framework for cluster ensemble[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(8): 1464-1477.
[25] VINCENT P, LAROCHELLE H, LAJOIE I, et al. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion[J]. Journal of Machine Learning Research, 2010, 11: 3371-3408.
[26] DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605.
[27] LI Z G, WU X M, CHANG S F. Segmentation using super-pixels: a bipartite graph partitioning approach[C]//Proceed-ings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 789-796.
[28] GUO X F, LIU X W, ZHU E, et al. Adaptive self-paced deep clustering with data augmentation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(9): 1680-1693.
[29] ASUNCION A, NEWMAN D. UCI machine learning reposi-tory[EB/OL]. [2020-03-10]. http://www.ics.uci.edu/~mlearn/ MLRepository.html.
[30] CHANG J L, WANG L F, MENG G F, et al. Deep adaptive image clustering[C]//Proceedings of the 2017 IEEE Interna-tional Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5880-5888.
[31] WU J J, LIU H F, XIONG H, et al. K-means-based con-sensus clustering: a unified view[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(1): 155-169.
[32] LIU H F, WU J J, LIU T L, et al. Spectral ensemble clustering via weighted k-means: theoretical and practical evidence[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(5): 1129-1143.
[33] GUO X F, GAO L, LIU X W, et al. Improved deep embed-ded clustering with local structure preservation[C]//Procee-dings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 1753-1759. |