Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (1): 205-216.DOI: 10.3778/j.issn.1673-9418.2008003
• Graphics and Image • Previous Articles Next Articles
CAO Yiqin, LIU Longbiao+(), HE Tian, DING Yaonan
Received:
2020-08-03
Revised:
2020-09-30
Online:
2022-01-01
Published:
2020-10-23
About author:
CAO Yiqin, born in 1964, M.S., professor, M.S. supervisor, member of CCF. His research interests include image processing and pattern recognition.Supported by:
通讯作者:
+ E-mail: 569144312@qq.com作者简介:
曹义亲(1964—),男,江西九江人,硕士,教授,硕士生导师,CCF会员,主要研究方向为图像处理、模式识别。基金资助:
CLC Number:
CAO Yiqin, LIU Longbiao, HE Tian, DING Yaonan. Method of Rail Surface Extraction Based on Greedy Selection and Slope Detection Expansion[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 205-216.
曹义亲, 刘龙标, 何恬, 丁要男. 基于贪心选择及斜率探测扩充的轨面提取方法[J]. 计算机科学与探索, 2022, 16(1): 205-216.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2008003
Image type | IoUs | Accuracy/% | Time/ms |
---|---|---|---|
RCRH无干扰 | 0.934 7 | 100.00 | 24.17 |
RCRH有干扰 | 0.922 7 | 95.00 | 26.84 |
总体 | 0.926 9 | 96.67 | 25.95 |
Table 1 Algorithm extraction results analysis
Image type | IoUs | Accuracy/% | Time/ms |
---|---|---|---|
RCRH无干扰 | 0.934 7 | 100.00 | 24.17 |
RCRH有干扰 | 0.922 7 | 95.00 | 26.84 |
总体 | 0.926 9 | 96.67 | 25.95 |
算法 | Rail_1, 真实边界:[922, 1 504] | Rail_2, 真实边界:[596, 1 282] | ||||||
---|---|---|---|---|---|---|---|---|
预测边界 | IoUs | 有效性 | 耗时/ms | 预测边界 | IoUs | 有效性 | 耗时/ms | |
HP[ | [455, 2 128] | 0.347 9 | No | 47.2 | [588, 1 800] | 0.561 8 | No | 52.6 |
VP[ | [1, 311] | 0.000 0 | No | 22.8 | [1, 200] | 0.000 0 | No | 18.5 |
TEBP[ | [878, 1 460] | 0.859 4 | Yes | 14.2 | [580, 1 266] | 0.954 4 | Yes | 12.8 |
HPCG[ | [878, 1 460] | 0.859 4 | Yes | 18.9 | [580, 1 266] | 0.954 4 | Yes | 16.3 |
CHMM[ | [878, 1 460] | 0.859 4 | Yes | 16.3 | [580, 1 266] | 0.954 4 | Yes | 13.2 |
EHLS[ | [948, 1 415] | 0.802 4 | Yes | 37.5 | [606, 1 197] | 0.859 0 | Yes | 38.4 |
EHSV[ | [917, 1 455] | 0.908 0 | Yes | 28.1 | [596, 1 825] | 0.557 2 | No | 29.3 |
Proposed method | [942, 1 503] | 0.963 9 | Yes | 21.4 | [599, 1 282] | 0.992 7 | Yes | 22.9 |
Table 2 Performance comparison of different rail surface extraction algorithms
算法 | Rail_1, 真实边界:[922, 1 504] | Rail_2, 真实边界:[596, 1 282] | ||||||
---|---|---|---|---|---|---|---|---|
预测边界 | IoUs | 有效性 | 耗时/ms | 预测边界 | IoUs | 有效性 | 耗时/ms | |
HP[ | [455, 2 128] | 0.347 9 | No | 47.2 | [588, 1 800] | 0.561 8 | No | 52.6 |
VP[ | [1, 311] | 0.000 0 | No | 22.8 | [1, 200] | 0.000 0 | No | 18.5 |
TEBP[ | [878, 1 460] | 0.859 4 | Yes | 14.2 | [580, 1 266] | 0.954 4 | Yes | 12.8 |
HPCG[ | [878, 1 460] | 0.859 4 | Yes | 18.9 | [580, 1 266] | 0.954 4 | Yes | 16.3 |
CHMM[ | [878, 1 460] | 0.859 4 | Yes | 16.3 | [580, 1 266] | 0.954 4 | Yes | 13.2 |
EHLS[ | [948, 1 415] | 0.802 4 | Yes | 37.5 | [606, 1 197] | 0.859 0 | Yes | 38.4 |
EHSV[ | [917, 1 455] | 0.908 0 | Yes | 28.1 | [596, 1 825] | 0.557 2 | No | 29.3 |
Proposed method | [942, 1 503] | 0.963 9 | Yes | 21.4 | [599, 1 282] | 0.992 7 | Yes | 22.9 |
[1] | 张辉, 宋雅男, 王耀南, 等. 钢轨缺陷无损检测与评估技术综述[J]. 仪器仪表学报, 2019, 40(2):11-25. |
ZHANG H, SONG Y N, WANG Y N, et al. Review of rail defect non-destructive testing and evaluation[J]. Chinese Journal of Scientific Instrument, 2019, 40(2):11-25. | |
[2] | LI Q Y, ZHONG Z D, LIANG Z P, et al. Rail inspection meets big data: methods and trends[C]// Proceedings of the 18th International Conference on Network-Based Information Systems, Taiwan, China, Sep 2-4, 2015. Washington: IEEE Computer Society, 2015: 302-308. |
[3] |
ZHANG H, JIN X T, JONATHAN Q M, et al. Automatic visual detection system of railway surface defects with curvature filter and improved Gaussian mixture model[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(7):1593-1608.
DOI URL |
[4] | 金侠挺, 王耀南, 张辉, 等. 基于贝叶斯CNN和注意力网络的钢轨表面缺陷检测系统[J]. 自动化学报, 2019, 45(12):2312-2327. |
JIN X T, WANG Y N, ZHANG H, et al. DeepRail: automatic visual detection system for railway surface defect using Bayesian CNN and attention network[J]. Acta Automatica Sinica, 2019, 45(12):2312-2327. | |
[5] | YU H M, LI Q Y, TAN Y Q, et al. A coarse-to-fine model for rail surface defect detection[J]. IEEE Transactions on Instrumentation & Measurement, 2019, 68(3):656-666. |
[6] | 唐湘娜, 王耀南. 铁轨表面缺陷的视觉检测与识别算法[J]. 计算机工程, 2013, 39(3):25-30. |
TANG X N, WANG Y N. Visual inspection and classification algorithm of rail surface defect[J]. Computer Engineering, 2013, 39(3):25-30. | |
[7] | 王耀南, 尹逊帅, 贺振东, 等. 钢轨表面图像冗余信息的模糊匹配算法[J]. 湖南大学学报(自然科学版), 2016, 43(4):75-80. |
WANG Y N, YIN X S, HE Z D, et al. Algorithm of fuzzy matching for redundancies of rail surface images[J]. Journal of Hunan University (Natural Sciences), 2016, 43(4):75-80. | |
[8] | LI Q Y, REN S W. A real-time visual inspection system for discrete surface defects of rail heads[J]. IEEE Transactions on Instrumentation & Measurement, 2012, 61(8):2189-2199. |
[9] | WU Y P, LI Q Y, JIA L M. Research on rail surface defect detection method based on UAV images[C]// Proceedings of the 2018 Prognostics and System Health Management Con-ference, Chongqing, Oct 26-28, 2018. Piscataway: IEEE, 2018: 553-558. |
[10] | 周咏. 基于图像处理的钢轨表面缺陷识别研究[D]. 兰州: 兰州交通大学, 2018. |
ZHOU Y. Research on the defect recognition for rail surface based on image processing[D]. Lanzhou: Lanzhou Jiaotong University, 2018. | |
[11] | 贺振东, 王耀南, 刘洁, 等. 基于背景差分的高铁钢轨表面缺陷图像分割[J]. 仪器仪表学报, 2016, 37(3):640-649. |
HE Z D, WANG Y N, LIU J, et al. Background differencing-based high-speed rail surface defect image segmentation[J]. Chinese Journal of Scientific Instrument, 2016, 37(3):640-649. | |
[12] | MIN Y Z, XIAO B Y, DANG J W, et al. Real time detection system for rail surface defects based on machine vision[J]. EURASIP Journal on Image and Video Processing, 2018, 1:3. |
[13] | 顾桂梅, 李晓梅, 常海涛, 等. 基于HSV空间的钢轨表面区域快速提取算法[J]. 云南大学学报(自然科学版), 2019, 41(4):707-717. |
GU G M, LI X M, CHANG H T, et al. Fast extraction agori-thm for rail surface region based on HSV space[J]. Journal of Yunnan University (Natural Sciences Edition), 2019, 41(4):707-717. | |
[14] |
PREMA C E, VINSLEY S S, SURESH S. Multi feature analysis of smoke in YUV color space for early forest fire detection[J]. Fire Technology, 2016, 52(5):1319-1342.
DOI URL |
[15] |
LIU J H, ZHONG X. An object tracking method based on mean shift algorithm with HSV color space and texture features[J]. Cluster Computing, 2019, 22(3):6079-6090.
DOI URL |
[16] |
SUN Y H, MU Y, QIN F, et al. Deer body adaptive threshold segmentation algorithm based on color space[J]. Computers, Materials and Continua, 2020, 64(2):1317-1328.
DOI URL |
[17] |
YANG Y G, ZOU L, ZHOU Y H, et al. Visually meaningful encryption for color images by using Qi hyper-chaotic system and singular value decomposition in YCbCr color space[J]. International Journal for Light and Electron Optics, 2020, 213:164422.
DOI URL |
[18] | WEI X J, YE P X. Efficiency of orthogonal super greedy algorithm under the restricted isometry property[J]. Journal of Inequalities and Applications, 2019(1):124. |
[19] | 郅惠博, 李洪涛, 张含露. 国内外铁路用钢轨标准对比分析研究[J]. 科技视界, 2019, 32:1-6. |
ZHI H B, LI H T, ZHANG H L. Comparative analysis and research on railway rail standards at home and abroad[J]. Science & Technology Vision, 2019, 32:1-6. | |
[20] | GIRSHICK R B. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448. |
[1] | ZHANG Zichen, YUE Kun, QI Zhiwei, DUAN Liang. Incremental Construction of Time-Series Knowledge Graph [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 598-607. |
[2] | PANG Yuan, WU Jigang, CHEN Long, YAO Mianyang. Energy Balancing for Multiple Devices with Multiple Tasks in Mobile Edge Computing [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 480-488. |
[3] | SUN Huanliang, FU Shanshan, LIU Junling, YU Ge, XU Hongfei. Team Formation with Weak Ties in Social Networks [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(6): 773-785. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/