Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (2): 403-412.DOI: 10.3778/j.issn.1673-9418.2008064
• Artificial Intelligence • Previous Articles Next Articles
SUN Wu1, DENG Zhaohong1,2,3,+(), LOU Qiongdan1, GU Xin4, WANG Shitong1
Received:
2020-08-20
Revised:
2020-11-03
Online:
2022-02-01
Published:
2020-11-19
About author:
SUN Wu, born in 1995, M.S. candidate. His research interest is interpretability artificial inte-lligence.Supported by:
孙武1, 邓赵红1,2,3,+(), 娄琼丹1, 顾鑫4, 王士同1
通讯作者:
+ E-mail: dengzhaohong@jiangnan.edu.cn作者简介:
孙武(1995—),男,江苏兴化人,硕士研究生,主要研究方向为可解释人工智能。基金资助:
CLC Number:
SUN Wu, DENG Zhaohong, LOU Qiongdan, GU Xin, WANG Shitong. Unsupervised Heterogeneous Domain Adaptation with Fuzzy Rule Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 403-412.
孙武, 邓赵红, 娄琼丹, 顾鑫, 王士同. 基于模糊规则学习的无监督异构领域自适应[J]. 计算机科学与探索, 2022, 16(2): 403-412.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2008064
数据集 | 样本数 | 维度(SURF/DeCAF) | 类别数 | |
---|---|---|---|---|
Office-Caltech | A(Amazon) | 958 | 800/4 096 | 10 |
D(DSLR) | 157 | 800/4 096 | ||
W(Webcam) | 295 | 800/4 096 | ||
C(Caltech) | 1 123 | 800/4 096 | ||
Wiki | Img | 500 | 128 | 5 |
Txt | 500 | 10 | ||
Reuters | English | 18 758 | 227 | 6 |
French | 18 758 | 246 | ||
German | 18 758 | 284 | ||
Italian | 18 758 | 209 | ||
Spanish | 18 758 | 162 |
Table 1 Statistical information of datasets
数据集 | 样本数 | 维度(SURF/DeCAF) | 类别数 | |
---|---|---|---|---|
Office-Caltech | A(Amazon) | 958 | 800/4 096 | 10 |
D(DSLR) | 157 | 800/4 096 | ||
W(Webcam) | 295 | 800/4 096 | ||
C(Caltech) | 1 123 | 800/4 096 | ||
Wiki | Img | 500 | 128 | 5 |
Txt | 500 | 10 | ||
Reuters | English | 18 758 | 227 | 6 |
French | 18 758 | 246 | ||
German | 18 758 | 284 | ||
Italian | 18 758 | 209 | ||
Spanish | 18 758 | 162 |
算法 | 参数设置 |
---|---|
LinearCCA | |
CTSVM | |
CDLS | |
FUHDA-noSP | |
FUHDA-noTP | |
FUHDA-noCCA | |
FUHDA | |
Table 2 Parameter settings of algorithms
算法 | 参数设置 |
---|---|
LinearCCA | |
CTSVM | |
CDLS | |
FUHDA-noSP | |
FUHDA-noTP | |
FUHDA-noCCA | |
FUHDA | |
Transfer tasks | Linear CCA | CTSVM | CDLS | FUHDA-noCCA | FUHDA-noSP | FUHDA-noTP | FUHDA |
---|---|---|---|---|---|---|---|
A_S2D | 75.55 | 71.47 | 93.68 | 28.18 | 88.83 | 87.37 | 93.84 |
A_D2S | 66.14 | 63.32 | 65.21 | 18.48 | 48.33 | 59.29 | 68.27 |
C_S2D | 47.86 | 45.45 | 88.79 | 37.40 | 83.97 | 85.40 | 88.87 |
C_D2S | 39.57 | 42.78 | 53.96 | 19.32 | 31.61 | 45.86 | 52.00 |
D_S2D | 17.31 | 57.69 | 77.17 | 27.39 | 99.36 | 22.93 | 99.36 |
D_D2S | 26.92 | 57.69 | 60.63 | 25.48 | 45.22 | 39.49 | 85.99 |
W_S2D | 53.06 | 72.45 | 97.07 | 32.88 | 99.66 | 73.56 | 99.66 |
W_D2S | 41.84 | 56.12 | 74.48 | 32.88 | 54.24 | 64.41 | 85.76 |
Average | 46.03 | 58.37 | 76.37 | 27.75 | 68.90 | 59.79 | 84.22 |
Table 3 Accuracy of algorithms on Office-Caltech dataset %
Transfer tasks | Linear CCA | CTSVM | CDLS | FUHDA-noCCA | FUHDA-noSP | FUHDA-noTP | FUHDA |
---|---|---|---|---|---|---|---|
A_S2D | 75.55 | 71.47 | 93.68 | 28.18 | 88.83 | 87.37 | 93.84 |
A_D2S | 66.14 | 63.32 | 65.21 | 18.48 | 48.33 | 59.29 | 68.27 |
C_S2D | 47.86 | 45.45 | 88.79 | 37.40 | 83.97 | 85.40 | 88.87 |
C_D2S | 39.57 | 42.78 | 53.96 | 19.32 | 31.61 | 45.86 | 52.00 |
D_S2D | 17.31 | 57.69 | 77.17 | 27.39 | 99.36 | 22.93 | 99.36 |
D_D2S | 26.92 | 57.69 | 60.63 | 25.48 | 45.22 | 39.49 | 85.99 |
W_S2D | 53.06 | 72.45 | 97.07 | 32.88 | 99.66 | 73.56 | 99.66 |
W_D2S | 41.84 | 56.12 | 74.48 | 32.88 | 54.24 | 64.41 | 85.76 |
Average | 46.03 | 58.37 | 76.37 | 27.75 | 68.90 | 59.79 | 84.22 |
Transfer tasks | Linear CCA | CTSVM | CDLS | FUHDA-noCCA | FUHDA-noSP | FUHDA-noTP | FUHDA |
---|---|---|---|---|---|---|---|
Txt2Img | 39.80 | 43.40 | 44.20 | 51.40 | 55.20 | 55.00 | 60.40 |
Img2Txt | 80.00 | 78.40 | 92.83 | 30.00 | 91.40 | 91.60 | 95.20 |
Average | 59.90 | 60.90 | 68.51 | 40.70 | 73.30 | 73.30 | 77.80 |
Table 4 Accuracy of algorithms on Wiki dataset %
Transfer tasks | Linear CCA | CTSVM | CDLS | FUHDA-noCCA | FUHDA-noSP | FUHDA-noTP | FUHDA |
---|---|---|---|---|---|---|---|
Txt2Img | 39.80 | 43.40 | 44.20 | 51.40 | 55.20 | 55.00 | 60.40 |
Img2Txt | 80.00 | 78.40 | 92.83 | 30.00 | 91.40 | 91.60 | 95.20 |
Average | 59.90 | 60.90 | 68.51 | 40.70 | 73.30 | 73.30 | 77.80 |
Transfer tasks | Linear CCA | CTSVM | CDLS | FUHDA-noCCA | FUHDA-noSP | FUHDA-noTP | FUHDA |
---|---|---|---|---|---|---|---|
EN2SP | 33.00 | 49.66 | 49.86 | 23.80 | 34.96 | 42.87 | 54.82 |
FR2SP | 33.57 | 33.05 | 50.67 | 27.20 | 46.16 | 46.21 | 53.60 |
GR2SP | 65.08 | 59.23 | 50.36 | 27.20 | 30.28 | 47.43 | 57.24 |
IT2SP | 19.30 | 21.37 | 50.83 | 23.09 | 32.16 | 36.35 | 62.29 |
Average | 37.74 | 40.83 | 50.43 | 25.32 | 35.89 | 43.22 | 56.99 |
Table 5 Accuracy of algorithms on Reuters dataset %
Transfer tasks | Linear CCA | CTSVM | CDLS | FUHDA-noCCA | FUHDA-noSP | FUHDA-noTP | FUHDA |
---|---|---|---|---|---|---|---|
EN2SP | 33.00 | 49.66 | 49.86 | 23.80 | 34.96 | 42.87 | 54.82 |
FR2SP | 33.57 | 33.05 | 50.67 | 27.20 | 46.16 | 46.21 | 53.60 |
GR2SP | 65.08 | 59.23 | 50.36 | 27.20 | 30.28 | 47.43 | 57.24 |
IT2SP | 19.30 | 21.37 | 50.83 | 23.09 | 32.16 | 36.35 | 62.29 |
Average | 37.74 | 40.83 | 50.43 | 25.32 | 35.89 | 43.22 | 56.99 |
[1] |
PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10):1345-1359.
DOI URL |
[2] |
LU J, BEHBOOD V, HAO P, et al. Transfer learning using computational intelligence: a survey[J]. Knowledge-Based Systems, 2015, 80:14-23.
DOI URL |
[3] |
DAY O, KHOSHGOFTAAR T M. A survey on heterogen-eous transfer learning[J]. Journal of Big Data, 2017, 4(1):29.
DOI URL |
[4] | 朱应钊. 异构迁移学习研究综述[J]. 电信科学, 2020, 36(3):100-110. |
ZHU Y Z. Review on heterogeneous transfer learning[J]. Telecommunication Science, 2020, 36(3):100-110. | |
[5] | AYTAR Y, ZISSERMAN A. Tabula rasa: model transfer for object category detection[C]//Proceedings of the 2011 IEEE International Conference on Computer Vision, Barcelona, Nov 6-13, 2011. Washington: IEEE Computer Society, 2011: 2252-2259. |
[6] | YANG J, YAN R, HAUPTMANN A G. Cross-domain video concept detection using adaptive SVMs[C]//Proceedings of the 15th International Conference on Multimedia 2007, Aug-sburg, Sep 24-29, 2007. New York: ACM, 2007: 188-197. |
[7] | BERGAMO A, TORRESANI L. Exploiting weakly-labeled Web images to improve object classification: a domain adaptation approach[C]//Proceedings of the 24th Annual Conference on Neural Information Processing Systems, Van-couver, Dec 6-9, 2010. Red Hook: Curran Associates, 2010: 181-189. |
[8] |
PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2010, 22(2):199-210.
DOI URL |
[9] | LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Dec 1-8, 2013. Washington: IEEE Computer Society, 2013: 2200-2207. |
[10] | GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 2066-2073. |
[11] |
LI J J, LU K, HUANG Z, et al. Transfer independently together: a generalized framework for domain adaptation[J]. IEEE Transactions on Cybernetics, 2018, 49(6):2144-2155.
DOI URL |
[12] | SI S, TAO D C, GENG B. Bregman divergence-based regu-larization for transfer subspace learning[J]. IEEE Transac-tions on Knowledge and Data Engineering, 2009, 22(7):929-942. |
[13] | ZHUANG F Z, CHENG X H, LUO P, et al. Supervised representation learning: transfer learning with deep auto-encoders[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 4119-4125. |
[14] | SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4058-4065. |
[15] | SHI X X, LIU Q, FAN W, et al. Transfer learning on heterogenous feature spaces via spectral transformation[C]//Proceedings of the 10th IEEE International Conference on Data Mining, Sydney, Dec 14-17, 2010. Washington: IEEE Computer Society, 2010: 1049-1054. |
[16] | WANG C, MAHADEVAN S. Heterogeneous domain adapta-tion using manifold alignment[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelligence, Bar-celona, Jul 16-22, 2011. Menlo Park: AAAI, 2011: 1541-1546. |
[17] | KULIS B, SAENKO K, DARRELL T. What you saw is not what you get: domain adaptation using asymmetric kernel transforms[C]//Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, Jun 20-25, 2011. Washington: IEEE Computer So-ciety, 2011: 1785-1792. |
[18] |
LI W, DUAN L X, XU D, et al. Learning with augmented features for supervised and semi-supervised heterogeneous domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36(6):1134-1148.
DOI URL |
[19] | HOFFMAN J. Efficient learning of domain-invariant image representations[J]. arXiv:1301.3224, 2013. |
[20] |
YEH Y R, HUANG C H, WANG Y C F. Heterogeneous domain adaptation and classification by exploiting the corr-elation subspace[J]. IEEE Transactions on Image Processing, 2014, 23(5):2009-2018.
DOI URL |
[21] | SHEN C, GUO Y H. Unsupervised heterogeneous domain adaptation with sparse feature transformation[C]// Proceedings of the 10th Asian Conference on Machine Learning, Beijing, Nov 14-16, 2018: 375-390. |
[22] |
LIU F, LU J, ZHANG G. Unsupervised heterogeneous domain adaptation via shared fuzzy equivalence relations[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(6):3555-3568.
DOI URL |
[23] | BALAKRISHNAMA S, GANAPATHIRAJU A. Linear discriminant analysis—a brief tutorial[J]. Institute for Signal and Information Processing, 1998, 18:1-8. |
[24] |
WOLD S, ESBENSEN K, GELADI P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2:37-52.
DOI URL |
[25] | THOMPSON B. Canonical correlation analysis[M]//EVERITT B, HOWELL D. Encyclopedia of Statistics in Behavioral Science. New York: John Wiley & Sons, Inc., 2005. |
[26] | TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transac-tions on Systems, Man, and Cybernetics, 1985(1):116-132. |
[27] | DENG Z H, JIANG Y Z, CHOI K S, et al. Knowledge-leverage-based TSK fuzzy system modeling[J]. IEEE Tran-sactions on Neural Networks and Learning Systems, 2013, 24(8):1200-1212. |
[28] | DENG Z H, JIANG Y Z, CAO L, et al. Knowledge-leverage based TSK fuzzy system with improved knowledge transfer[C]//Proceedings of the 2014 IEEE International Conference on Fuzzy Systems. Piscataway: IEEE, 2014: 178-185. |
[29] |
ZUO H, ZHANG G Q, PEDRYCZ W, et al. Fuzzy regression transfer learning in Takagi-Sugeno fuzzy models[J]. IEEE Transactions on Fuzzy Systems, 2016, 25(6):1795-1807.
DOI URL |
[30] |
XU P, DENG Z H, WANG J, et al. Transfer representation learning with TSK fuzzy system[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(3):649-663.
DOI URL |
[31] | 蒋亦樟, 邓赵红, 王士同. ML型迁移学习模糊系统[J]. 自动化学报, 2012, 38(9):1393-1409. |
JIANG Y Z, DENG Z H, WANG S T. Mamdani-Larsen type transfer learning fuzzy system[J]. Acta Automatica Sinica, 2012, 38(9):1393-1409. | |
[32] |
MENDEL J M. Fuzzy logic systems for engineering: a tutorial[J]. Proceedings of the IEEE, 1995, 83(3):345-377.
DOI URL |
[33] | 关庆, 邓赵红, 王士同. 改进的模糊C-均值聚类算法[J]. 计算机工程与应用, 2011, 47(10):27-29. |
GUAN Q, DENG Z H, WANG S T. Improved fuzzy C-means clustering algorithm[J]. Computer Engineering and Applications, 2011, 47(10):27-29. | |
[34] | SU T, DY J G. In search of deterministic methods for initializing K-means and Gaussian mixture clustering[J]. Inte-lligent Data Analysis, 2007, 11(4):319-338. |
[35] |
HARDOON D R, SZEDMAK S, SHAWE-TAYLOR J. Can-onical correlation analysis: an overview with application to learning methods[J]. Neural Computation, 2004, 16(12):2639-2664.
DOI URL |
[36] | TSAI Y H, YEH Y R, WANG Y C. Learning cross-domain landmarks for heterogeneous domain adaptation[C]//Pro-ceedings of the 2016 Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 5081-5090. |
[1] | XU Peng, DENG Zhaohong, WANG Jun, WANG Shitong. Joint Information Preservation for Heterogeneous Domain Adaptation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1183-1193. |
[2] | ZHANG Chunxiang, WANG Jun, ZHANG Jiaxu, DENG Zhaohong, PAN Xiang, WANG Shitong. Novel TSK Modeling Method with Joint Group Sparse Learning for Autism Aided Diagnosis [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2083-2093. |
[3] | CAO Ya, DENG Zhaohong, WANG Shitong. TSK Fuzzy System Model with Monotonic Constraints [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(9): 1487-1495. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/