Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (5): 1117-1127.DOI: 10.3778/j.issn.1673-9418.2010008
• Artificial Intelligence • Previous Articles Next Articles
YANG Yongzhao, ZHANG Yujin(), ZHANG Lijun
Received:
2020-10-09
Revised:
2021-03-12
Online:
2022-05-01
Published:
2022-05-19
About author:
YANG Yongzhao, born in 1993, M.S. candidate. His research interest is computer vision.Supported by:
通讯作者:
+ E-mail: yjzhang@sues.edu.cn作者简介:
杨永兆(1993—),男,江苏南京人,硕士研究生,主要研究方向为计算机视觉。基金资助:
CLC Number:
YANG Yongzhao, ZHANG Yujin, ZHANG Lijun. Dense Point Cloud Reconstruction by Shape and Pose Features Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1117-1127.
杨永兆, 张玉金, 张立军. 由形状结构和位姿特征学习的稠密点云重建[J]. 计算机科学与探索, 2022, 16(5): 1117-1127.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2010008
Metric | DensePCR (sparse) | AttentionDPCR (sparse) | Proposed (sparse) |
---|---|---|---|
CD | 7.28 | 1.09 | 0.81 |
EMD | 3.82 | 2.37 | 1.63 |
Table 1 Comparison with DensePCR and AttentionDPCR in sparse phase
Metric | DensePCR (sparse) | AttentionDPCR (sparse) | Proposed (sparse) |
---|---|---|---|
CD | 7.28 | 1.09 | 0.81 |
EMD | 3.82 | 2.37 | 1.63 |
Category | DensePCR | AttentionDPCR | Proposed | |||
---|---|---|---|---|---|---|
CD | EMD | CD | EMD | CD | EMD | |
Airplane | 0.012 96 | 7 668.77 | 0.011 44 | 4 478.17 | 0.013 30 | 3 195.51 |
Bench | 0.050 53 | 7 674.41 | 0.009 35 | 4 736.86 | 0.006 83 | 2 614.49 |
Cabinet | 0.033 65 | 6 523.34 | 0.005 50 | 5 358.08 | 0.003 39 | 2 597.19 |
Car | 0.028 27 | 6 609.19 | 0.005 76 | 4 676.27 | 0.003 01 | 2 651.46 |
Chair | 0.022 47 | 7 166.00 | 0.017 78 | 4 687.47 | 0.012 16 | 3 255.84 |
Lamp | 0.030 97 | 6 885.38 | 0.009 78 | 4 940.78 | 0.011 85 | 3 252.39 |
Monitor | 0.061 64 | 7 835.55 | 0.009 40 | 5 193.07 | 0.006 70 | 2 759.85 |
Rifle | 0.056 24 | 7 685.88 | 0.011 41 | 4 376.69 | 0.005 54 | 2 749.35 |
Sofa | 0.030 83 | 7 149.55 | 0.010 50 | 4 763.43 | 0.005 52 | 2 748.80 |
Speaker | 0.029 02 | 6 801.10 | 0.005 30 | 5 343.47 | 0.004 67 | 2 741.46 |
Table | 0.023 61 | 6 460.96 | 0.006 14 | 4 591.36 | 0.008 54 | 2 953.96 |
Telephone | 0.022 42 | 5 005.21 | 0.004 75 | 5 213.99 | 0.005 16 | 2 561.94 |
Vessel | 0.035 37 | 6 975.10 | 0.007 50 | 4 429.93 | 0.004 14 | 2 623.63 |
Mean | 0.033 69 | 6 956.95 | 0.008 81 | 4 829.96 | 0.006 98 | 2 823.53 |
Table 2 Comparison of quantitative results of various algorithms on ShapeNet
Category | DensePCR | AttentionDPCR | Proposed | |||
---|---|---|---|---|---|---|
CD | EMD | CD | EMD | CD | EMD | |
Airplane | 0.012 96 | 7 668.77 | 0.011 44 | 4 478.17 | 0.013 30 | 3 195.51 |
Bench | 0.050 53 | 7 674.41 | 0.009 35 | 4 736.86 | 0.006 83 | 2 614.49 |
Cabinet | 0.033 65 | 6 523.34 | 0.005 50 | 5 358.08 | 0.003 39 | 2 597.19 |
Car | 0.028 27 | 6 609.19 | 0.005 76 | 4 676.27 | 0.003 01 | 2 651.46 |
Chair | 0.022 47 | 7 166.00 | 0.017 78 | 4 687.47 | 0.012 16 | 3 255.84 |
Lamp | 0.030 97 | 6 885.38 | 0.009 78 | 4 940.78 | 0.011 85 | 3 252.39 |
Monitor | 0.061 64 | 7 835.55 | 0.009 40 | 5 193.07 | 0.006 70 | 2 759.85 |
Rifle | 0.056 24 | 7 685.88 | 0.011 41 | 4 376.69 | 0.005 54 | 2 749.35 |
Sofa | 0.030 83 | 7 149.55 | 0.010 50 | 4 763.43 | 0.005 52 | 2 748.80 |
Speaker | 0.029 02 | 6 801.10 | 0.005 30 | 5 343.47 | 0.004 67 | 2 741.46 |
Table | 0.023 61 | 6 460.96 | 0.006 14 | 4 591.36 | 0.008 54 | 2 953.96 |
Telephone | 0.022 42 | 5 005.21 | 0.004 75 | 5 213.99 | 0.005 16 | 2 561.94 |
Vessel | 0.035 37 | 6 975.10 | 0.007 50 | 4 429.93 | 0.004 14 | 2 623.63 |
Mean | 0.033 69 | 6 956.95 | 0.008 81 | 4 829.96 | 0.006 98 | 2 823.53 |
Metric | angled (sparse) | original (sparse) |
---|---|---|
CD | 0.61 | 0.81 |
EMD | 1.30 | 1.63 |
Table 3 Comparison of quantitative results of proposed model with or without angle
Metric | angled (sparse) | original (sparse) |
---|---|---|
CD | 0.61 | 0.81 |
EMD | 1.30 | 1.63 |
Category | CD | EMD | ||||
---|---|---|---|---|---|---|
DensePCR | AttentionDPCR | Proposed | DensePCR | AttentionDPCR | Proposed | |
Chair | 0.083 03 | 0.018 90 | 0.027 10 | 7 509.14 | 5 356.83 | 4 020.31 |
Sofa | 0.108 15 | 0.019 88 | 0.010 07 | 8 610.34 | 6 023.24 | 2 771.44 |
Table | 0.208 19 | 0.033 30 | 0.041 23 | 9 988.14 | 5 654.59 | 4 692.94 |
Mean | 0.133 12 | 0.024 02 | 0.026 13 | 8 702.54 | 5 678.22 | 3 828.33 |
Table 4 Comparison of quantitative results of various algorithms on Pix3D dataset
Category | CD | EMD | ||||
---|---|---|---|---|---|---|
DensePCR | AttentionDPCR | Proposed | DensePCR | AttentionDPCR | Proposed | |
Chair | 0.083 03 | 0.018 90 | 0.027 10 | 7 509.14 | 5 356.83 | 4 020.31 |
Sofa | 0.108 15 | 0.019 88 | 0.010 07 | 8 610.34 | 6 023.24 | 2 771.44 |
Table | 0.208 19 | 0.033 30 | 0.041 23 | 9 988.14 | 5 654.59 | 4 692.94 |
Mean | 0.133 12 | 0.024 02 | 0.026 13 | 8 702.54 | 5 678.22 | 3 828.33 |
[1] | FAN H, SU H, GUIBAS L J. A point set generation network for 3D object reconstruction from a single image[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 605-613. |
[2] | LIN C H, KONG C, LUCEY S. Learning efficient point cloud generation for dense 3D object reconstruction[J]. arXiv: 1706.07036, 2017. |
[3] | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 652-660. |
[4] | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5099-5108. |
[5] | YU L, LI X, FU C W, et al. PU-Net: point cloud upsampling network[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake, Jun 18-23, 2018. Piscataway: IEEE, 2018: 2790-2799. |
[6] |
YANG B, ROSA S, MARKHAM A, et al. Dense 3D object reconstruction from a single depth view[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(12): 2820-2834.
DOI URL |
[7] | GIRDHAR R, FOUHEY D F, RODRIGUEZ M, et al. Lear-ning a predictable and generative vector representation for objects[C]// LNCS 9910: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 484-499. |
[8] | CHOY C B, XU D, GWAK J Y, et al. 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction[C]// LNCS 9912: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 628-644. |
[9] | KURENKOV A, JI J W, GARG A, et al. DeformNet: free-form deformation network for 3D shape reconstruction from a single image[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Washington: IEEE Computer Society, 2018: 858-866. |
[10] | JACK D, PONTES J K, SRIDHARAN S, et al. Learning free-form deformations for 3D object reconstruction[C]// LNCS 11362: Proceedings of the 14th Asian Conference on Computer Vision, Perth, Dec 2-6, 2018. Cham: Springer, 2018: 317-333. |
[11] | MANDIKAL P, NAVANEET K L, AGARWAL M, et al. 3D-LMNet: latent embedding matching for accurate and diverse 3D point cloud reconstruction from a single image[J]. arXiv: 1807.07796, 2018. |
[12] |
ZHANG Y, LIU Z, LIU T, et al. RealPoint3D: an efficient generation network for 3D object reconstruction from a single image[J]. IEEE Access, 2019, 7: 57539-57549.
DOI URL |
[13] | LI K J, PHAM T, ZHAN H Y, et al. Efficient dense point cloud object reconstruction using deformation vector fields[C]// LNCS 11216: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 508-524. |
[14] | HUANG Z, YU Y, XU J, et al. PF-Net: point fractal network for 3D point cloud completion[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 7659-7667. |
[15] |
LI B, ZHANG Y, ZHAO B, et al. 3D-ReConstnet: a single-view 3D-object point cloud reconstruction network[J]. IEEE Access, 2020, 8: 83782-83790.
DOI URL |
[16] | LIN M, CHEN Q, YAN S. Network in network[J]. arXiv: 1312.4400, 2013. |
[17] | WANG Y, SUN Y B, LIU Z W, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 1-12. |
[18] | WU W X, QI Z A, LI F X. PointConv: deep convolutional networks on 3D point clouds[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9621-9630. |
[19] | MANDIKAL P, RADHAKRISHNAN V B. Dense 3D point cloud reconstruction using a deep pyramid network[C]// Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision, Waikoloa Village, Jan 7-11, 2019. Piscataway: IEEE, 2019: 1052-1060. |
[20] |
LU Q, XIAO M J, LU Y Y, et al. Attention-based dense point cloud reconstruction from a single image[J]. IEEE Access, 2019, 7: 137420-137431.
DOI URL |
[21] | SIMONYAN K, ZISSERNMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. |
[22] | WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 6450-6458. |
[23] | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3146-3154. |
[24] |
JIN X, JING P G, SU Y T. AMFNet: an adversarial network for median filtering detection[J]. IEEE Access, 2018, 6: 50459-50467.
DOI URL |
[25] | RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// LNCS 9351: Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. |
[26] | CHANG A X, FUNKHOUSER T, GUIBAS L, et al. Shape-Net: an information-rich 3D model repository[J]. arXiv:1512.03012, 2015. |
[27] | FELLBAUM C. WordNet[M]// The Encyclopedia of Applied Linguistics. New York: John Wiley & Sons, Inc., 2012. |
[28] | SUN X Y, WU J J, ZHANG X M, et al. Pix3D:dataset and methods for single-image 3D shape modeling[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 2974-2983. |
[1] | LI Changhua, TIAN Simin, ZHOU Fangxiao. Extracting Contour of BIM Wall Based on Adaptive Block and 3D Reconstruction Research [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(3): 452-461. |
[2] | WANG Haifei, JIA Jinyuan, XIE Ning. Vanishing Point Detection and Scene Reconstruction of Cluttered Room [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 678-687. |
[3] | SHI Ying, WANG Wenjian, BAI Xuefei. 3D Dense Reconstruction Method Based on Multiple Features [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(5): 594-603. |
[4] | GUO Fusheng, XU Huarong, GAO Wei, HU Zhanyi. Scene Reconstruction Based on View Clustering via Camera Auxiliary Information [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(9): 783-799. |
[5] | GAO Hui, ZHANG Maojun, XU Wei. 3D Reconstruction from Single Catadioptric Omnidirectional Image Assisted by Remote Sensing Image [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(2): 147-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/