Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (4): 806-821.DOI: 10.3778/j.issn.1673-9418.2010015
• Database Technology • Previous Articles Next Articles
HU Zisong, WANG Lizhen+(), Vanha Tran, ZHOU Lihua
Received:
2020-10-09
Revised:
2020-12-01
Online:
2022-04-01
Published:
2020-12-08
About author:
HU Zisong, born in 1995, M.S. candidate. His research interest is spatial data mining.Supported by:
通讯作者:
+ E-mail: lzhwang@ynu.edu.cn作者简介:
胡自松(1995—),男,云南曲靖人,硕士研究生,主要研究方向为空间数据挖掘。基金资助:
CLC Number:
HU Zisong, WANG Lizhen, Vanha Tran, ZHOU Lihua. Mining Spatial Prevalent Co-location Patterns Based on Graph Databases[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 806-821.
胡自松, 王丽珍, Vanha Tran, 周丽华. 基于图数据库的空间频繁并置模式挖掘[J]. 计算机科学与探索, 2022, 16(4): 806-821.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2010015
数据集 | 特征数 | 实例数 | 范围(D×D) |
---|---|---|---|
真实数据集1 | 80 | 10 264 | 25 000×60 000 |
真实数据集2 | 26 | 25 276 | 14 000×25 000 |
真实数据集3 | 56 | 207 891 | 50 000×30 000 |
Table 1 Description of real datasets
数据集 | 特征数 | 实例数 | 范围(D×D) |
---|---|---|---|
真实数据集1 | 80 | 10 264 | 25 000×60 000 |
真实数据集2 | 26 | 25 276 | 14 000×25 000 |
真实数据集3 | 56 | 207 891 | 50 000×30 000 |
参数 | 意义 |
---|---|
| 距离阈值 |
| 最小频繁性阈值 |
| 特征数量 |
| 实例数量 |
| 相同邻域内生成的模式实例数量 |
| 不同模式中重叠实例数占总实例数的比例 |
Table 2 Description of synthetic data parameters
参数 | 意义 |
---|---|
| 距离阈值 |
| 最小频繁性阈值 |
| 特征数量 |
| 实例数量 |
| 相同邻域内生成的模式实例数量 |
| 不同模式中重叠实例数占总实例数的比例 |
数据集 | 距离阈值/m | 频繁度阈值 |
---|---|---|
真实数据集1 | 150 | 0.2 |
真实数据集2 | 400 | 0.3 |
真实数据集3 | 50 | 0.2 |
Table 3 Default parameters of real datasets
数据集 | 距离阈值/m | 频繁度阈值 |
---|---|---|
真实数据集1 | 150 | 0.2 |
真实数据集2 | 400 | 0.3 |
真实数据集3 | 50 | 0.2 |
数据集 | 执行时间/s | 时间效率提升倍数 | ||||
---|---|---|---|---|---|---|
GDBFracScore | CliqueSearch | InstanceValidation | | | | |
真实数据集1 | 130 | 13 | 4 | 10.0 | 32.5 | 3.2 |
真实数据集2 | 137 | 10 | 5 | 13.7 | 27.4 | 2.0 |
真实数据集3 | 568 | 81 | 49 | 7.0 | 11.5 | 1.6 |
Table 4 Execution time and speed-up ratio of proposed algorithm and benchmark
数据集 | 执行时间/s | 时间效率提升倍数 | ||||
---|---|---|---|---|---|---|
GDBFracScore | CliqueSearch | InstanceValidation | | | | |
真实数据集1 | 130 | 13 | 4 | 10.0 | 32.5 | 3.2 |
真实数据集2 | 137 | 10 | 5 | 13.7 | 27.4 | 2.0 |
真实数据集3 | 568 | 81 | 49 | 7.0 | 11.5 | 1.6 |
[1] | YOO J S, BOULWARE D, KIMMEY D. A parallel spatial co-location mining algorithm based on MapReduce[C]// Pro-ceedings of the 2014 IEEE International Congress on Big Data, Anchorage, Jun 27-Jul 2, 2014. Washington: IEEE Computer Society, 2014: 25-31. |
[2] | CHAN H K, LONG C, YAN D, et al. Fraction-Score: a new support measure for co-location pattern mining[C]// Procee-dings of the 35th IEEE International Conference on Data Engineering, Macao, China, Apr 8-11, 2019. Piscataway: IEEE, 2019: 1514-1525. |
[3] |
HUANG Y, SHEKHAR S, XIONG H. Discovering colocation patterns from spatial data sets: a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16(12):1472-1485.
DOI URL |
[4] | YOO J S, SHEKHAR S, CELIK M. A join-less approach for co-location pattern mining: a summary of results[C]// Proceedings of the 5th IEEE International Conference on Data Mining, Houston, Nov 27-30, 2005. Washington: IEEE Computer Society, 2005: 813-816. |
[5] |
YAO X J, JIANG X F, WANG D C, et al. Efficiently mining maximal co-locations in a spatial continuous field under directed road networks[J]. Information Sciences, 2020, 542:357-379.
DOI URL |
[6] |
BAO X G, WANG L Z. A clique-based approach for co-location pattern mining[J]. Information Sciences, 2019, 490:244-264.
DOI URL |
[7] |
YU W H. Spatial co-location pattern mining for location-based services in road networks[J]. Expert Systems with Applications, 2016, 46:324-335.
DOI URL |
[8] |
MENNIS J L, LIU J W. Mining association rules in spatio-temporal data: an analysis of urban socioeconomic and land cover change[J]. Transactions in GIS, 2010, 9(1):5-17.
DOI URL |
[9] |
LEIBOVICI D G, CLARAMUNT C, LE GUYADER D, et al. Local and global spatio-temporal entropy indices based on distance-ratios and co-occurrences[J]. International Journal of Geographical Information Science, 2014, 28(5):1061-1084.
DOI URL |
[10] |
YUE H, ZHU X Y, YE X Y, et al. The local colocation patterns of crime and land-use features in Wuhan, China[J]. ISPRS International Journal of Geo-Information, 2017, 6(10):307.
DOI URL |
[11] |
AKBARI M, SAMADZADEGAN F, WEIBEL R. A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollution[J]. Journal of Geographical Systems, 2015, 17(3):249-274.
DOI URL |
[12] |
SHAH F, CASTELLTORT A, LAURENT A. Handling missing values for mining gradual patterns from NoSQL graph data-bases[J]. Future Generation Computer Systems, 2020, 111:523-538.
DOI URL |
[13] | YOO J S, SHEKHAR S. A partial join approach for mining co-location patterns[C]// Proceedings of the 12th ACM Inter-national Workshop on Geographic Information Systems, Nov 2-13, 2004. New York: ACM, 2004: 241-249. |
[14] |
YOO J S, BOULWARE D, KIMMEY D. Parallel co-location mining with MapReduce and NoSQL systems[J]. Knowledge and Information Systems, 2020, 62(4):1433-1463.
DOI URL |
[15] |
SHESHIKALA M, RAO D R, PRAKASH R V. Parallel approach for finding co-location pattern—a map reduce framework[J]. Procedia Computer Science, 2016, 89:341-348.
DOI URL |
[16] |
YANG P Z, WANG L Z, WANG X X. A MapReduce approach for spatial co-location pattern mining via ordered-clique-growth[J]. Distributed and Parallel Databases, 2020, 38(2):531-560.
DOI URL |
[17] | KOPERSKI K, HAN J W. Discovery of spatial association rules in geographic information databases[C]// LNCS 951: Proceedings of the 4th International Symposium on Spatial Databases, Portland, Aug 6-9, 1995. Berlin, Heidelberg: Springer, 1995: 47-66. |
[18] | SHEKHAR S, HUANG Y. Discovering spatial co-location patterns: a summary of results[C]// LNCS 2121: Proceedings of the 7th International Symposium on Spatial and Temporal Databases, Redondo Beach, Jul 12-15, 2001. Berlin, Heidel-berg: Springer, 2001: 236-256. |
[19] | WANG L Z, BAO Y Z, LU J, et al. A new join-less approach for co-location pattern mining[C]// Proceedings of the 8th IEEE International Conference on Computer and Information Technology, Sydney, Jul 8-11, 2008. Washington: IEEE Computer Society, 2008: 197-202. |
[20] |
SAINJU A M, AGHAJARIAN D, JIANG Z, et al. Parallel grid-based colocation mining algorithms on GPUs for big spatial event data[J]. IEEE Transactions on Big Data, 2020, 6(1):107-118.
DOI URL |
[21] |
YOO J S, BOW M. A framework for generating condensed co-location sets from spatial databases[J]. Intelligent Data Analysis, 2019, 23(2):333-355.
DOI URL |
[22] | XIAO X Y, XIE X, LUO Q, et al. Density-based co-location pattern discovery[C]// Proceedings of the 16th ACM SIG-SPATIAL International Symposium on Advances in Geo-graphic Information Systems, Irvine, Nov 5-7, 2008. New York: ACM, 2008: 29. |
[23] |
YAO X J, CHEN L J, PENG L, et al. A co-location pattern-mining algorithm with a density-weighted distance thre-sholding consideration[J]. Journal of Information Sciences, 2017, 396:144-161.
DOI URL |
[24] | CELIK M, KANG J M, SHEKHAR S. Zonal co-location pattern discovery with dynamic parameters[C]// Proceedings of the 7th IEEE International Conference on Data Mining, Omaha, Oct 28-31, 2007. Washington: IEEE Computer Society, 2007: 433-438. |
[25] | DAI B R, LIN M Y. Efficiently mining dynamic zonal co-location patterns based on maximal co-locations[C]// Pro-ceedings of the 11th International Conference on Data Mining Workshops, Vancouver, Dec 11, 2011. Washington: IEEE Computer Society, 2011: 861-868. |
[26] | QIAN F, CHIEW K, HE Q M, et al. Mining regional co-location patterns with kNNG[J]. Journal of Intelligent Infor-mation Systems, 2014, 42(3):485-505. |
[27] | 王光耀, 王丽珍, 杨培忠, 等. 极小负co-location模式及有效的挖掘算法[J]. 计算机科学与探索, 2021, 15(2):366-378. |
WANG G Y, WANG L Z, YANG P Z, et al. Minimal negative co-location patterns and effective mining algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2):366-378. | |
[28] | 姚晓婧. 面向城市服务设施数据的同位模式挖掘研究[J]. 测绘学报, 2018, 47(10):1426. |
YAO X J. Co-location researches on urban public-service facilities[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(10):1426. | |
[29] | 刘文凯, 刘启亮, 蔡建南. 自然邻域支持下的空间同位模式挖掘方法[J]. 测绘学报, 2019, 48(1):95-105. |
LIU W K, LIU Q L, CAI J N. Discovery of co-location patterns based on natural neighborhood[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):95-105. | |
[30] | 马董, 陈红梅, 王丽珍, 等. 空间亚频繁co-location模式的主导特征挖掘[J]. 计算机应用, 2020, 40(2):465-472. |
MA D, CHEN H M, WANG L Z, et al. Dominant feature mining of spatial sub-prevalent co-location patterns[J]. Journal of Computer Applications, 2020, 40(2):465-472. |
[1] | LI Jinhong, WANG Lizhen, ZHOU Lihua. Top-k Average Utility Co-location Pattern Mining of Fuzzy Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1053-1063. |
[2] | WANG Guangyao, WANG Lizhen, YANG Peizhong, CHEN Hongmei. Minimal Negative Co-location Patterns and Effective Mining Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 366-378. |
[3] | CHU Chuanxin, WANG Lizhen, ZHOU Lihua, LI Xuyang. Mining Fuzzy Relationship Between Malignant Tumors and Industrial Pollution [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2061-2071. |
[4] | LI Wenpeng, WANG Jianbin, LIN Zeqi, ZHAO Junfeng, ZOU Yanzhen, XIE Bing. Software Knowledge Graph Building Method for Open Source Project [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(6): 851-862. |
[5] | HU Xin, WANG Lizhen, ZHOU Lihua, WEN Fosheng. Mining Spatial Maximal Co-Location Patterns [J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(2): 150-160. |
[6] | WU Pingping, WANG Lizhen, ZHOU Yongheng. Discovering Co-Location from Spatial Data Sets with Fuzzy Attributes [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(4): 348-358. |
[7] | OUYANG Zhiping, WANG Lizhen, ZHOU Lihua. Mining Spatial Co-location Patterns for Fuzzy Location of Instances [J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(12): 1144-1152. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/