Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (8): 1865-1876.DOI: 10.3778/j.issn.1673-9418.2012041
• Graphics and Image • Previous Articles Next Articles
HE Li, ZHANG Hongyan(), FANG Wanlin
Received:
2020-12-11
Revised:
2021-02-04
Online:
2022-08-01
Published:
2021-03-03
About author:
HE Li, born in 1969, Ph.D., professor, M.S. supervisor, professional member of CCF. Her research interests include data mining, machine learning, etc.Supported by:
通讯作者:
+E-mail: zhy16622553596@163.com作者简介:
何丽(1969—),女,安徽舒城人,博士,教授,硕士生导师,CCF专业会员,主要研究方向为数据挖掘、机器学习等。基金资助:
CLC Number:
HE Li, ZHANG Hongyan, FANG Wanlin. Salient Instance Segmentation via Multiscale Boundary Characteristic Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1865-1876.
何丽, 张红艳, 房婉琳. 融合多尺度边界特征的显著实例分割[J]. 计算机科学与探索, 2022, 16(8): 1865-1876.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2012041
特征图 | 输入 | 通道数 | 卷积核 | 卷积核数 | 通道数 | 输出 |
---|---|---|---|---|---|---|
输入图像 | 320×320 | 3 | — | — | — | — |
F3 | 40×40 | 256 | 3×3 | 256 | 256 | 40×40 |
F4 | 20×20 | 256 | 3×3 | 256 | 256 | 20×20 |
F5 | 10×10 | 256 | 3×3 | 256 | 256 | 10×10 |
I1 | 20×20 | 256 | — | — | 256 | 40×40 |
I2 | 10×10 | 256 | — | — | 256 | 40×40 |
C1 | 40×40 | 256 | 3×3 | 128 | 128 | 40×40 |
BR1-c1 | 40×40 | 128 | 3×3 | 64 | 64 | 40×40 |
BR1-d1 | 40×40 | 64 | 3×3 | 64 | 64 | 40×40 |
BR1-cc1 | — | — | — | — | 256 | 40×40 |
BR1-c2 | 40×40 | 256 | 1×1 | 64 | 64 | 40×40 |
BR1-r1 | — | — | — | — | 128 | 40×40 |
Cc2 | — | — | — | — | 256 | 40×40 |
C2 | 40×40 | 256 | 1×1 | 64 | 64 | 40×40 |
BR4-c1 | 40×40 | 128 | 3×3 | 64 | 64 | 40×40 |
BR4-d1 | 40×40 | 64 | 3×3 | 64 | 64 | 40×40 |
BR4-cc1 | — | — | — | — | 256 | 40×40 |
BR4-c2 | 40×40 | 256 | 1×1 | 64 | 64 | 40×40 |
BR4-r1 | — | — | — | — | 128 | 40×40 |
C3 | 40×40 | 128 | 3×3 | 1 | 1 | 40×40 |
Table 1 Parameters of each layer of boundary feature extraction branch of target instance
特征图 | 输入 | 通道数 | 卷积核 | 卷积核数 | 通道数 | 输出 |
---|---|---|---|---|---|---|
输入图像 | 320×320 | 3 | — | — | — | — |
F3 | 40×40 | 256 | 3×3 | 256 | 256 | 40×40 |
F4 | 20×20 | 256 | 3×3 | 256 | 256 | 20×20 |
F5 | 10×10 | 256 | 3×3 | 256 | 256 | 10×10 |
I1 | 20×20 | 256 | — | — | 256 | 40×40 |
I2 | 10×10 | 256 | — | — | 256 | 40×40 |
C1 | 40×40 | 256 | 3×3 | 128 | 128 | 40×40 |
BR1-c1 | 40×40 | 128 | 3×3 | 64 | 64 | 40×40 |
BR1-d1 | 40×40 | 64 | 3×3 | 64 | 64 | 40×40 |
BR1-cc1 | — | — | — | — | 256 | 40×40 |
BR1-c2 | 40×40 | 256 | 1×1 | 64 | 64 | 40×40 |
BR1-r1 | — | — | — | — | 128 | 40×40 |
Cc2 | — | — | — | — | 256 | 40×40 |
C2 | 40×40 | 256 | 1×1 | 64 | 64 | 40×40 |
BR4-c1 | 40×40 | 128 | 3×3 | 64 | 64 | 40×40 |
BR4-d1 | 40×40 | 64 | 3×3 | 64 | 64 | 40×40 |
BR4-cc1 | — | — | — | — | 256 | 40×40 |
BR4-c2 | 40×40 | 256 | 1×1 | 64 | 64 | 40×40 |
BR4-r1 | — | — | — | — | 128 | 40×40 |
C3 | 40×40 | 128 | 3×3 | 1 | 1 | 40×40 |
对比模型 | mAP0.5 | mAP0.7 |
---|---|---|
MSRNet | 65.30 | 52.30 |
S4Net | 86.70 | 63.70 |
MDNN | 84.90 | 67.87 |
MBCNet | 88.90 | 67.94 |
Table 2 Comparison of experimental results of different models %
对比模型 | mAP0.5 | mAP0.7 |
---|---|---|
MSRNet | 65.30 | 52.30 |
S4Net | 86.70 | 63.70 |
MDNN | 84.90 | 67.87 |
MBCNet | 88.90 | 67.94 |
对比模型 | mAP | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
S4Net | mAP0.5 | 88.45 | 87.86 | 85.47 | 78.31 |
MBCNet | mAP0.5 | 93.00 | 90.97 | 85.02 | 78.20 |
S4Net | mAP0.7 | 71.28 | 68.24 | 57.15 | 37.58 |
MBCNet | mAP0.7 | 75.87 | 72.27 | 63.32 | 39.31 |
Table 3 Comparison of segmentation results with different number of instances %
对比模型 | mAP | 1 | 2 | 3 | 4 |
---|---|---|---|---|---|
S4Net | mAP0.5 | 88.45 | 87.86 | 85.47 | 78.31 |
MBCNet | mAP0.5 | 93.00 | 90.97 | 85.02 | 78.20 |
S4Net | mAP0.7 | 71.28 | 68.24 | 57.15 | 37.58 |
MBCNet | mAP0.7 | 75.87 | 72.27 | 63.32 | 39.31 |
输入层 | mAP0.5/% | mAP0.7/% | Time/(s/iter) |
---|---|---|---|
F2,F3,F4,F5,F6 | 88.3 | 67.8 | 0.435 |
F2,F3,F4,F5 | 88.2 | 67.8 | 0.418 |
F3,F4,F5,F6 | 87.8 | 66.3 | 0.423 |
F2,F3,F4 | 88.5 | 67.3 | 0.410 |
F3,F4,F5 | 88.9 | 67.9 | 0.408 |
F4,F5,F6 | 87.9 | 66.6 | 0.413 |
F2,F3 | 87.7 | 66.2 | 0.390 |
F3,F4 | 87.4 | 66.0 | 0.388 |
F4,F5 | 88.2 | 66.3 | 0.395 |
Table 4 Comparison of effects of multi-scale fusion strategies on segmentation results
输入层 | mAP0.5/% | mAP0.7/% | Time/(s/iter) |
---|---|---|---|
F2,F3,F4,F5,F6 | 88.3 | 67.8 | 0.435 |
F2,F3,F4,F5 | 88.2 | 67.8 | 0.418 |
F3,F4,F5,F6 | 87.8 | 66.3 | 0.423 |
F2,F3,F4 | 88.5 | 67.3 | 0.410 |
F3,F4,F5 | 88.9 | 67.9 | 0.408 |
F4,F5,F6 | 87.9 | 66.6 | 0.413 |
F2,F3 | 87.7 | 66.2 | 0.390 |
F3,F4 | 87.4 | 66.0 | 0.388 |
F4,F5 | 88.2 | 66.3 | 0.395 |
组合 | mAP0.5 | mAP0.7 |
---|---|---|
Base | 87.7 | 65.1 |
Base+BR1+BR2+BR3 | 87.8 | 66.2 |
Base+BR4 | 88.2 | 65.3 |
Base+BR1+BR2+BR3+BR4 | 88.9 | 67.9 |
Table 5 Comparison of experimental results of various combinations of BR block %
组合 | mAP0.5 | mAP0.7 |
---|---|---|
Base | 87.7 | 65.1 |
Base+BR1+BR2+BR3 | 87.8 | 66.2 |
Base+BR4 | 88.2 | 65.3 |
Base+BR1+BR2+BR3+BR4 | 88.9 | 67.9 |
对比模型 | mAP0.5/% | mAP0.7/% | Time/(s/iter) |
---|---|---|---|
MBCNet_noResidual | 86.8 | 64.7 | 0.400 |
MBCNet_noHDC | 86.9 | 64.1 | 0.408 |
MBCNet | 88.9 | 67.9 | 0.408 |
Table 6 Comparison of influence of HDC and residual structure on segmentation results
对比模型 | mAP0.5/% | mAP0.7/% | Time/(s/iter) |
---|---|---|---|
MBCNet_noResidual | 86.8 | 64.7 | 0.400 |
MBCNet_noHDC | 86.9 | 64.1 | 0.408 |
MBCNet | 88.9 | 67.9 | 0.408 |
Loss对比 | mAP0.5 | mAP0.7 |
---|---|---|
Lseg | 86.7 | 63.6 |
Lseg、Ledge | 87.8 | 65.3 |
Ledge-seg | 88.9 | 67.9 |
Table 7 Comparison of loss function of different combinations %
Loss对比 | mAP0.5 | mAP0.7 |
---|---|---|
Lseg | 86.7 | 63.6 |
Lseg、Ledge | 87.8 | 65.3 |
Ledge-seg | 88.9 | 67.9 |
[1] | LI G B, XIE Y, LIN L, et al. Instance-level salient object segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 247-256. |
[2] | FAN R C, CHENG M M, HOU Q B, et al. S4Net:single stage salient-instance segmentation[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Washington: IEEE Computer Society, 2019: 6096-6105. |
[3] | SHELHAMER E, LONG J, DARRELL T. Fully convolu-tional networks for semantic segmentation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Com-puter Society, 2015: 3431-3440. |
[4] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 2017, 39(6): 1137-1149. |
[5] | HE K, GKIOXARI G, PIOTR D, et al. Mask R-CNN[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2980-2988. |
[6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 779-788. |
[7] | TIAN Z, SHEN C, CHEN H, et al. FCOS: fully convolu-tional one-stage object detection[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway:IEEE, 2019: 9627-9636. |
[8] | BOLYA D, ZHOU C, XIAO F, et al. YOLACT: real-time instance segmentation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway:IEEE, 2019: 9156-9165. |
[9] | XIE E, SUN P, SONG X, et al. PolarMask: single shot ins-tance segmentation with polar representation[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Washington: IEEE Computer Society, 2020: 12190-12199. |
[10] | POSNER M I. Neural mechanisms of selective visual atten-tion[J]. Annual Review of Neuroscience, 1995, 18(1): 193-222. |
[11] | ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 2002, 20(11): 1254-1259. |
[12] | LIU T, SUN J, ZHENG N N, et al. Learning to detect a salient object[C]// Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, Jun 17-22, 2007. Washington: IEEE Computer Society, 2007: 353-367. |
[13] | LI G, YU Y. Visual saliency based on multiscale deep fea-tures[C]// Proceedings of the 2015 IEEE Conference on Com-puter Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 5455-5463. |
[14] | ZHAO R, OUYANG W, LI H, et al. Saliency detection by multi-context deep learning[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 1265-1274. |
[15] | 于明, 李博昭, 于洋, 等. 基于多图流形排序的图像显著性检测[J]. 自动化学报, 2019, 45(3): 577-592. |
YU M, LI B Z, YU Y, et al. Image saliency detection with multi-graph model and manifold ranking[J]. Acta Automa-tica Sinica, 2019, 45(3): 577-592. | |
[16] | 常振, 段先华, 鲁文超, 等. 基于多尺度的贝叶斯模型显著性检测[J]. 计算机工程与应用, 2020, 56(11): 207-213. |
CHANG Z, DUAN X H, LU W C, et al. Multi-scale salie-ncy detection based on Bayesian framework[J]. Computer Engineering and Applications, 2020, 56(11): 207-213. | |
[17] | 卢珊妹, 郭强, 王任, 等. 基于多特征注意力循环网络的显著性检测[J]. 计算机辅助设计与图形学学报, 2020, 32(12): 1926-1937. |
LU S M, GUO Q, WANG R, et al. Salient object detection using multi-scale features with attention recurrent mechanism[J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(12): 1926-1937. | |
[18] | PEI J L, TANG H, LIU C, et al. Salient instance segmen-tation via subitizing and clustering[J]. Neurocomputing, 2020, 402: 423-436. |
[19] | KITTLER J. On the accuracy of the Sobel edge detector[J]. Image & Vision Computing, 1983, 1(1): 37-42. |
[20] | CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 1986, 8(6): 679-698. |
[21] | ARBELÁEZ P, MAIRE M, FOWLKES C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Tran-sactions on Pattern Analysis and Machine Intelligence, 2011, 33(5): 898-916. |
[22] | XIE S, TU Z. Holistically-nested edge detection[J]. Interna-tional Journal of Computer Vision, 2017, 125(5): 3-18. |
[23] | YANG J, PRICE B, COHEN S, et al. Object contour detection with a fully convolutional encoder-decoder network[C]// Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 193-202. |
[24] | 董子昊, 邵秀丽. 多类别的边缘感知方法在图像分割中的应用[J]. 计算机辅助设计与图形学学报, 2019, 31(7): 1075-1085. |
DONG Z H, SHAO X L. A multi-category edge perception method for semantic segmentation[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(7): 1075-1085. | |
[25] | 钱宝鑫, 肖志勇, 宋威. 改进的卷积神经网络在肺部图像上的分割应用[J]. 计算机科学与探索, 2020, 14(8): 1358-1367. |
QIAN B X, XIAO Z Y, SONG W. Application of improved convolutional neural network in lung image segmentation[J]. Journal of Frontiers of Computer Science and Techno-logy, 2020, 14(8): 1358-1367. | |
[26] | WANG P Q, CHEN P F, YUAN Y, et al. Understanding convo-lution for semantic segmentation[C]// Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Washington: IEEE Computer Society, 2018: 1451-1460. |
[27] | GIRSHICK R. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 13-16, 2015. Washington: IEEE Computer Society, 2015: 1440-1448. |
[1] | GU Penghui, XIAO Zhiyong. Application of Improved U-Net in Retinal Vessel Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 683-691. |
[2] | WANG Sheng, XIE Hui, ZHANG Fuquan. Semi-Fragile Image Watermarking Algorithm by Using Edge Detection and Zernike Invariant Moments [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 629-641. |
[3] | CHEN Sihan, YU Jianbo. Edge Detection Algorithm Based on Bidimensional Local Mean Decomposition [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(6): 847-855. |
[4] | GUO Yanxiang, CHEN Yaowu. Vehicle License Plate Location Method Based on Edge Detection and Color-Texture Histogram [J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(6): 719-726. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/