Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (5): 1107-1116.DOI: 10.3778/j.issn.1673-9418.2012067
• Artificial Intelligence • Previous Articles Next Articles
LIN Jiawei1,+(), WANG Shitong2
Received:
2020-12-03
Revised:
2021-01-27
Online:
2022-05-01
Published:
2022-05-19
About author:
LIN Jiawei, born in 1996, M.S. candidate. His research interests include artificial intelligence and pattern recognition.Supported by:
通讯作者:
+ E-mail: jnuljw@163.com作者简介:
林佳伟(1996—),男,山东威海人,硕士研究生,主要研究方向为人工智能、模式识别。基金资助:
CLC Number:
LIN Jiawei, WANG Shitong. Deep Adversarial-Reconstruction-Classification Networks for Unsupervised Domain Adaptation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1107-1116.
林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2012067
Methods | MNIST MNIST-M | SVHN MNIST | MNIST USPS | Average |
---|---|---|---|---|
CovNetsrc | 52.2 | 54.9 | 85.5 | 64.2 |
SDA | 42.6 | 55.2 | 43.1 | 46.7 |
SA | 56.7 | 59.3 | 85.9 | 67.3 |
DANN | 80.3 | 66.6 | 88.4 | 78.4 |
DARCN | 86.4 | 72.2 | 94.7 | 84.4 |
CovNettgt | 95.9 | 99.4 | 96.1 | 97.1 |
Table 1 Average classification accuracy of 10 times on digital datasets %
Methods | MNIST MNIST-M | SVHN MNIST | MNIST USPS | Average |
---|---|---|---|---|
CovNetsrc | 52.2 | 54.9 | 85.5 | 64.2 |
SDA | 42.6 | 55.2 | 43.1 | 46.7 |
SA | 56.7 | 59.3 | 85.9 | 67.3 |
DANN | 80.3 | 66.6 | 88.4 | 78.4 |
DARCN | 86.4 | 72.2 | 94.7 | 84.4 |
CovNettgt | 95.9 | 99.4 | 96.1 | 97.1 |
Methods | WebcamAmazon | Dslr Amazon | Dslr Caltech | Dslr Webcam | WebcamCaltech | Average |
---|---|---|---|---|---|---|
CovNetsrc | 41.2 | 35.2 | 35.7 | 67.2 | 38.8 | 43.6 |
JGSA | 40.8 | 38.7 | 30.3 | 93.2 | 33.6 | 47.3 |
DDC | 72.1 | 42.5 | 43.7 | 71.0 | 69.4 | 59.7 |
DANN | 63.0 | 62.7 | 57.9 | 88.9 | 55.6 | 65.6 |
DARCN | 65.8 | 66.0 | 60.6 | 89.8 | 59.8 | 68.4 |
CovNettgt | 81.3 | 81.3 | 70.6 | 93.3 | 70.6 | 79.4 |
Table 2 Average classification accuracy of 10 times on Office-Caltech10 dataset %
Methods | WebcamAmazon | Dslr Amazon | Dslr Caltech | Dslr Webcam | WebcamCaltech | Average |
---|---|---|---|---|---|---|
CovNetsrc | 41.2 | 35.2 | 35.7 | 67.2 | 38.8 | 43.6 |
JGSA | 40.8 | 38.7 | 30.3 | 93.2 | 33.6 | 47.3 |
DDC | 72.1 | 42.5 | 43.7 | 71.0 | 69.4 | 59.7 |
DANN | 63.0 | 62.7 | 57.9 | 88.9 | 55.6 | 65.6 |
DARCN | 65.8 | 66.0 | 60.6 | 89.8 | 59.8 | 68.4 |
CovNettgt | 81.3 | 81.3 | 70.6 | 93.3 | 70.6 | 79.4 |
网络 | 输入维度 | 参数量/104 | 内存占用/MB | 计算量/104 |
---|---|---|---|---|
网络1 | 28×28×3 | 34 | 1.30 | 3 152 |
网络2 | 32×32×3 | 66 | 2.52 | 5 680 |
网络3 | 224×224×3 | 21 636 | 825.35 | 414 076 |
Table 3 Analysis of parameter scale in DARCN
网络 | 输入维度 | 参数量/104 | 内存占用/MB | 计算量/104 |
---|---|---|---|---|
网络1 | 28×28×3 | 34 | 1.30 | 3 152 |
网络2 | 32×32×3 | 66 | 2.52 | 5 680 |
网络3 | 224×224×3 | 21 636 | 825.35 | 414 076 |
[1] | SIMONYAN K, ZISSERMAN A. Very deep convolutional net-works for large-scale image recognition[J]. arXiv:1409.1556, 2014. |
[2] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Com-puter Society, 2016: 770-778. |
[3] | LONG M S, WANG J M, DING G G, et al. Transfer joint matching for unsupervised domain adaptation[C]// Proceed-ings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 21-23, 2014. Washing-ton: IEEE Computer Society, 2014: 1410-1417. |
[4] | ALJUNDI R, EMONET R, MUSELET D, et al. Landmarks-based kernelized subspace alignment for unsupervised domain adaptation[C]// Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 56-63. |
[5] | 毛发贵, 李碧雯, 沈备军. 基于实例迁移的跨项目软件缺陷预测[J]. 计算机科学与探索, 2016, 10(1): 43-55. |
MAO F G, LI B W, SHEN B J. Cross-project software de-fect prediction based on instance transfer[J]. Journal of Fron-tiers of Computer Science and Technology, 2016, 10(1): 43-55. | |
[6] |
LONG M S, WANG J M, DING G G, et al. Adaptation regula-rization: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089.
DOI URL |
[7] | WANG J D, FENG W J, CHEN Y Q, et al. Visual domain adaptation with manifold embedded distribution alignment[J]. arXiv:1807.07258, 2018. |
[8] | SUN B C, FENG J S, SAENKO K. Return of frustratingly easy domain adaptation[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 2058-2065. |
[9] | YAN K, KOU L, ZHANG D. Learning domain-invariant sub-space using domain features and independence maximization[J]. IEEE Transactions on Systems, Man, and Cybernetics, 2018, 48(1): 288-299. |
[10] | 许鹏, 邓赵红, 王骏, 等. 基于联合信息保持的异构领域自适应[J]. 计算机科学与探索, 2020, 14(7): 1183-1193. |
XU P, DENG Z H, WANG J, et al. Joint information pre-servation for heterogeneous domain adaptation[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1183-1193. | |
[11] | TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial dis-criminative domain adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recogni-tion, Hawaii, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7167-7176. |
[12] | MOTIIAN S, PICCIRILLI M, ADJEROH D A, et al. Uni-fied deep supervised domain adaptation and generalization[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5715-5725. |
[13] | 刘建伟, 孙正康, 罗雄麟. 域自适应学习研究进展[J]. 自动化学报, 2014, 40(8): 1576-1600. |
LIU J W, SUN Z K, LUO X L. Review and research devel-opment on domain adaptation learning[J]. Acta Automatica Sinica, 2014, 40(8): 1576-1600. | |
[14] | PRATT L Y. Discriminability-based transfer between neural net-works[C]// Advances in Neural Information Processing Syst-ems 5, Denver, Nov 30-Dec 3, 1992. San Mateo: Morgan Kauf-mann, 1992: 204-211. |
[15] | BEN-DAVID S, BLITZER J, CRAMMER K, et al. Analysis of representations for domain adaptation[C]// Proceedings of the 20th Annual Conference on Neural Information Proce-ssing Systems, Vancouver, Dec 4-7, 2006. Cambridge: MIT Press, 2007: 137-144. |
[16] | BLITZER J, CRAMMER K, KULESZA A, et al. Learning bounds for domain adaptation[C]// Proceedings of the 21st Annual Conference on Neural Information Processing Sys-tems, Vancouver, Dec 3-6, 2007. Red Hook: Curran Asso-ciates, 2008: 129-136. |
[17] | YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014: 3320-3328. |
[18] | FERNANDO B, HABRARD A, SEBBAN M, et al. Subspace alignment for domain adaptation[J]. arXiv:1409.5241, 2014. |
[19] | GLOROT X, BORDES A, BENGIO Y. Domain adaptation for large-scale sentiment classification: a deep learning approach[C]// Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omnipress, 2011: 513-520. |
[20] | CHOPRA S, BALAKRISHNAN S, GOPALAN R. Dlid: deep learning for domain adaptation by interpolating bet-ween domains[C]// Proceedings of the 2013 Workshop on Chal-lenges in Representation Learning, Atlanta, 2013: 11690995. |
[21] | YOU K C, KOU Z, LONG M S. Co-tuning for transfer learning[C]// Proceedings of the Annual Conference on Neural Information Processing Systems 2020, Dec 6-12, 2020: 1-11. |
[22] | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030. |
[23] | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. arXiv:1406.2661, 2014. |
[24] |
KHAN M Z, JABEEN S, KHAN M U G, et al. A realistic image generation of face from text description using the fully trained generative adversarial networks[J]. IEEE Access, 2021, 9: 1250-1260.
DOI URL |
[25] |
ZHANG F, WANG C. MSGAN: generative adversarial net-works for image seasonal style transfer[J]. IEEE Access, 2020, 8: 104830-104840.
DOI URL |
[26] | 吴春梅, 胡军浩, 尹江华. 利用改进生成对抗网络进行人体姿态识别[J]. 计算机工程与应用, 2020, 56(8): 96-103. |
WU C M, HU J H, YIN J H. Using improved generative adversarial network for human pose estimation[J]. Computer Engineering and Applications, 2020, 56(8): 96-103. | |
[27] |
IENCO D, PENSA R G. Enhancing graph-based semisuper-vised learning via knowledge-aware data embedding[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(11): 5014-5020.
DOI URL |
[28] | DA K. A method for stochastic optimization[J]. arXiv:1412.6980, 2014. |
[29] | ZHANG J, LI W, OGUNBONA P. Joint geometrical and statistical alignment for visual domain adaptation[C]// Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Hawaii, Jul 21-26, 2017. Washing-ton: IEEE Computer Society, 2017: 1859-1867. |
[30] | TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[J]. arXiv:1412.3474, 2014. |
[1] | XIA Hongbin, XIAO Yifei, LIU Yuan. Long Text Generation Adversarial Network Model with Self-Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1603-1610. |
[2] | SHEN Ruicai, ZHAI Junhai, HOU Yingzhen. Multi-discriminator Generative Adversarial Networks Based on Selective Ensemble Learning [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1429-1438. |
[3] | JIANG Yi, XU Jiajie, LIU Xu, ZHU Junwu. Research on Edge-Guided Image Repair Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 669-682. |
[4] | CHEN Junfen, ZHANG Ming, ZHAO Jiacheng, XIE Bojun, LI Yan. Deep Clustering Algorithm Based on Denoising and Self-Attention [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1717-1727. |
[5] | SUN Yu, WEI Benzheng, LIU Chuan, ZHANG Kuixing, CONG Jinyu. Melting Reduction Auto-Encoder [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1526-1533. |
[6] | LI Meng, LI Yanling, LIN Min. Review of Transfer Learning for Named Entity Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 206-218. |
[7] | MA Yongjie, XU Xiaodong, ZHANG Ru, XIE Yirong, CHEN Hong. Generative Adversarial Network and Its Research Progress in Image Generation [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1795-1811. |
[8] | ZHAO Pengfei, LI Yanling, LIN Min. Research Progress on Intent Detection Oriented to Transfer Learning [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1261-1274. |
[9] | LI Guangli, HUA Jin, YUAN Tian, ZHU Tao, WU Renzhong, JI Donghong, ZHANG Hongbin. Recommendation System Based on Users' Preference Mining Generative Adversarial Networks [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 803-814. |
[10] | REN Hao, LIU Baisong, SUN Jinyang. Advances and Perspectives on Knowledge Transfer Based Cross-Domain Recom-mendation [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1813-1827. |
[11] | LI Junjie, WANG Qian. Perceptually Similar Image Classification Adversarial Example Generation Model [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1930-1942. |
[12] | LIANG Junjie, WEI Jianjing, JIANG Zhengfeng. Generative Adversarial Networks GAN Overview [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 1-17. |
[13] | ZHANG Tao, REN Xiangying, LIU Yang, GENG Yanzhang. Acoustic Features Extraction of Speech Enhancement Based on Auto-Encoder Feature [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1341-1350. |
[14] | SHI Cheng, PAN Bin, GUO Xiaoming, LI Qinqin, ZHANG Luyue, ZHONG Fan. Application of Generative Adversarial Networks in Image Completion [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1402-1410. |
[15] | SHANG Xianzhen, HAN Meng, SUN Yuzhong, SUN Yuning, CHEN Xu, HU Manman, MEI Yudong. Skin Diseases Diagnosis Method Based on Generative Adversarial Networks and Naive Bayes [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 1005-1015. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/