Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (8): 1923-1932.DOI: 10.3778/j.issn.1673-9418.2012099
• Theory and Algorithm • Previous Articles
YE Tingyu1, YE Jun1,+(), WANG Hui1,2, WANG Lei1,2
Received:
2020-12-28
Revised:
2021-03-05
Online:
2022-08-01
Published:
2021-04-08
About author:
YE Tingyu, born in 1997, M.S. candidate. His research interests include evolutionary computing, swarm intelligence and machine learning.Supported by:
通讯作者:
+E-mail: 2003992646@nit.edu.cn。作者简介:
叶廷宇(1997—),男,江西南昌人,硕士研究生,主要研究方向为演化计算、群智能、机器学习。基金资助:
CLC Number:
YE Tingyu, YE Jun, WANG Hui, WANG Lei. Rough K-means Clustering Algorithm Combined with Artificial Bee Colony Optimization[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1923-1932.
叶廷宇, 叶军, 王晖, 王磊. 结合人工蜂群优化的粗糙K-means聚类算法[J]. 计算机科学与探索, 2022, 16(8): 1923-1932.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2012099
数据集 | 对象个数 | 属性数 | 类别数 |
---|---|---|---|
Iris | 150 | 4 | 3 |
Wine | 178 | 13 | 3 |
Balance-Scale | 625 | 4 | 3 |
Segmentation-test-tes | 2 310 | 19 | 7 |
Sonar | 208 | 60 | 2 |
Table 1 Experimental dataset information
数据集 | 对象个数 | 属性数 | 类别数 |
---|---|---|---|
Iris | 150 | 4 | 3 |
Wine | 178 | 13 | 3 |
Balance-Scale | 625 | 4 | 3 |
Segmentation-test-tes | 2 310 | 19 | 7 |
Sonar | 208 | 60 | 2 |
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 839.101 | 24.932 | 85.323 | 119.100 | 9.930 | 0.015 |
文献[ | 123.972 | 32.833 | 90.014 | 83.527 | 8.121 | 0.087 |
文献[ | 122.341 | 29.550 | 90.121 | 81.674 | 8.432 | 0.093 |
本文算法 | 117.934 | 33.671 | 91.030 | 79.126 | 7.300 | 0.097 |
Table 2 Performance comparison on Iris dataset
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 839.101 | 24.932 | 85.323 | 119.100 | 9.930 | 0.015 |
文献[ | 123.972 | 32.833 | 90.014 | 83.527 | 8.121 | 0.087 |
文献[ | 122.341 | 29.550 | 90.121 | 81.674 | 8.432 | 0.093 |
本文算法 | 117.934 | 33.671 | 91.030 | 79.126 | 7.300 | 0.097 |
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 16 553.721 | 464.671 | 69.113 | 2.418E+6 | 11.131 | 0.141 |
文献[ | 15 137.514 | 471.131 | 73.672 | 2.641E+6 | 9.140 | 0.132 |
文献[ | 15 096.421 | 474.342 | 73.702 | 2.351E+6 | 9.721 | 0.163 |
本文算法 | 15 013.141 | 481.252 | 74.834 | 2.317E+6 | 8.301 | 0.172 |
Table 3 Performance comparison on Wine dataset dataset
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 16 553.721 | 464.671 | 69.113 | 2.418E+6 | 11.131 | 0.141 |
文献[ | 15 137.514 | 471.131 | 73.672 | 2.641E+6 | 9.140 | 0.132 |
文献[ | 15 096.421 | 474.342 | 73.702 | 2.351E+6 | 9.721 | 0.163 |
本文算法 | 15 013.141 | 481.252 | 74.834 | 2.317E+6 | 8.301 | 0.172 |
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 921.334 | 27.373 | 52.260 | 2.371 0E+3 | 17.891 | 0.942 |
文献[ | 837.471 | 35.490 | 56.134 | 2.332 6E+3 | 13.170 | 0.771 |
文献[ | 823.620 | 36.192 | 57.341 | 2.359 0E+3 | 13.793 | 1.030 |
本文算法 | 812.142 | 37.942 | 57.792 | 2.322 3E+3 | 11.132 | 1.021 |
Table 4 Performance comparison on Balance-Scale dataset
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 921.334 | 27.373 | 52.260 | 2.371 0E+3 | 17.891 | 0.942 |
文献[ | 837.471 | 35.490 | 56.134 | 2.332 6E+3 | 13.170 | 0.771 |
文献[ | 823.620 | 36.192 | 57.341 | 2.359 0E+3 | 13.793 | 1.030 |
本文算法 | 812.142 | 37.942 | 57.792 | 2.322 3E+3 | 11.132 | 1.021 |
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 2 767.002 | 97.803 | 54.522 | 1.817E+7 | 26.014 | 53.231 |
文献[ | 2 519.413 | 121.214 | 62.791 | 1.749E+7 | 23.772 | 75.745 |
文献[ | 2 483.165 | 129.672 | 64.237 | 1.313E+7 | 21.431 | 90.674 |
本文算法 | 2 402.424 | 137.493 | 69.667 | 1.212E+7 | 19.343 | 90.903 |
Table 5 Performance comparison on Segmentation dataset
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 2 767.002 | 97.803 | 54.522 | 1.817E+7 | 26.014 | 53.231 |
文献[ | 2 519.413 | 121.214 | 62.791 | 1.749E+7 | 23.772 | 75.745 |
文献[ | 2 483.165 | 129.672 | 64.237 | 1.313E+7 | 21.431 | 90.674 |
本文算法 | 2 402.424 | 137.493 | 69.667 | 1.212E+7 | 19.343 | 90.903 |
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 8 602.743 | 234.326 | 55.774 | 1.279E+5 | 13.974 | 0.521 |
文献[ | 6 478.157 | 341.314 | 71.176 | 1.154E+5 | 12.332 | 0.614 |
文献[ | 5 353.849 | 246.425 | 79.334 | 9.590E+4 | 11.041 | 0.679 |
本文算法 | 5 002.874 | 251.234 | 83.095 | 9.474E+4 | 9.011 | 0.673 |
Table 6 Performance comparison on Sonar dataset
文献 | 类内 距离 | 类间 距离 | 准确 率/% | 误差 平方 | 迭代 次数 | 运行 时间/s |
---|---|---|---|---|---|---|
文献[ | 8 602.743 | 234.326 | 55.774 | 1.279E+5 | 13.974 | 0.521 |
文献[ | 6 478.157 | 341.314 | 71.176 | 1.154E+5 | 12.332 | 0.614 |
文献[ | 5 353.849 | 246.425 | 79.334 | 9.590E+4 | 11.041 | 0.679 |
本文算法 | 5 002.874 | 251.234 | 83.095 | 9.474E+4 | 9.011 | 0.673 |
[1] | LINGRAS P, WEST C. Interval set clustering of Web user with rough K-means[J]. Journal of Intelligent Information Systems, 2004, 23(1): 5-16. |
[2] | 苗夺谦, 李道国. 粗糙集理论、 算法与应用[M]. 北京: 清华大学出版社, 2008. |
MIAO D Q, LI D G. Rough sets theory algorithms and application[M]. Beijing: Tsinghua University Press, 2008. | |
[3] | MITRA S, BANKA H, PEDRYCZ W. Rough fuzzy collabo-rative clustering[J]. IEEE Transactions on Systems, Man and Cybernetics, 2006, 36(4): 795-805. |
[4] | MAJI P, PAL S K. RFCM: a hybrid clustering algorithm using rough and fuzzy sets[J]. Fundamenta Informaticae, 2007, 80(4): 475-496. |
[5] | 周涛. 具有自适应参数的粗糙k-means聚类算法[J]. 计算机工程与应用, 2010, 46(26): 7-10. |
ZHOU T. Adaptive rough k-means clustering algorithm[J]. Computer Engineering and Applications, 2010, 46(26): 7-10. | |
[6] | 周杨, 苗夺谦, 岳晓冬. 基于自适应权重的粗糙K-均值聚类算法[J]. 计算机科学, 2011, 38(6): 237-241. |
ZHOU Y, MIAO D Q, YUE X D. Rough K-means clus-tering based on self-adaptive weights[J]. Computer Science, 2011, 38(6): 237-241. | |
[7] | 李莲, 罗可, 周博翔. 基于粒计算的粗糙集聚类算法[J]. 计算机应用研究, 2013, 30(10): 2916-2919. |
LI L, LUO K, ZHOU B X. Rough clustering algorithm based on granular computing[J]. Application Research of Compu-ters, 2013, 30(10): 2916-2919. | |
[8] | 蒋亦樟, 邓赵红, 王骏, 等. 熵加权多视角协同划分模糊聚类算法[J]. 软件学报, 2014, 25(10): 2293-2311. |
JIANG Y Z, DENG Z H, WANG J, et al. Collaborative parti-tion multi-view fuzzy clustering algorithm using entropy weig-hting[J]. Journal of Software, 2014, 25(10): 2293-2311. | |
[9] | PETERS G. Rough clustering utilizing the principle of in-difference[J]. Information Sciences, 2014, 277: 358-374. |
[10] | 孙志鹏, 钱雪忠, 吴秦, 等. 基于加权距离计算的自适应粗糙 K-均值算法[J]. 计算机应用研究, 2016, 33(7): 1987-1991. |
SUN Z P, QIAN X Z, WU Q, et al. Self-adaptive rough K-means algorithm based on weighted distance[J]. Application Research of Computers, 2016, 33(7): 1987-1991. | |
[11] | 洪亮亮, 罗可. 改进的基于遗传算法的粗糙聚类方法[J]. 计算机工程与应用, 2010, 46(25): 142-145. |
HONG L L, LUO K. Improved rough clustering method based on genetic algorithm[J]. Computer Engineering and Applications, 2010, 46(25): 142-145. | |
[12] | 刘洋, 王慧琴, 张小红. 结合蚁群算法的改进粗糙K均值聚类算法[J]. 数据采集与处理, 2019, 34(2): 341-348. |
LIU Y, WANG H Q, ZHANG X H. An improved rough K-means clustering algorithm combining ant colony algori-thm[J]. Journal of Data Acquisition and Processing, 2019, 34(2): 341-348. | |
[13] | 逯瑞强, 马福民, 张腾飞. 基于区间2-型模糊度量的粗糙K-means聚类算法[J]. 模式识别与人工智能, 2018, 31(3): 265-274. |
LU R Q, MA F M, ZHANG T F. Interval type-2 fuzzy mea-sure based rough K-means clustering[J]. Pattern Recogni-tion and Artificial Intelligence, 2018, 31(3): 265-274. | |
[14] | YANG M S, NATALIANI Y. Robust-learning fuzzy C-means clustering algorithm with unknown number of clusters[J]. Pattern Recognition, 2017, 71: 45-59. |
[15] | ZHANG X T, MA F M, CHAO X, et al. Rough fuzzy K-means clustering algorithm based on mixed metrics and cluster adap-tive adjustment[J]. Pattern Recognition and Artificial Intel-ligence, 2019, 32(12): 1141-1150. |
[16] | OFEK N, ROKACH L, STERN R, et al. Fast-CBUS: a fast clustering-based undersampling method for addressing the class imbalance problem[J]. Neuro Computing, 2017, 243: 88-102. |
[17] | 张腾飞, 李中文, 马福民, 等. 基于类簇规模不均衡度量的粗糙模糊K-means聚类算法[J]. 信息与控制, 2020, 49(3): 281-288. |
ZHANG T F, LI Z W, MA F M, et al. Improved rough fuzzy K-means clustering based on imbalanced measure of cluster sizes[J]. Information and Control, 2020, 49(3): 281-288. | |
[18] | 王子龙, 李进, 宋亚飞. 基于距离和权重改进的K-means算法[J]. 计算机工程与应用, 2020, 56(23): 87-94. |
WANG Z L, LI J, SONG Y F. Improved K-means algo-rithm based on distance and weight[J]. Computer Enginee-ring and Applications, 2020, 56(23): 87-94. | |
[19] | 郭永坤, 章新友, 刘莉萍, 等. 优化初始聚类中心的K-means聚类算法[J]. 计算机工程与应用, 2020, 56(15): 172-178. |
GUO Y K, ZHANG X Y, LIU L P, et al. K-means cluste-ring algorithm of optimizing initial clustering center[J]. Com-puter Engineering and Applications, 2020, 56(15): 172-178. | |
[20] | KARABOGA D, BASTURK B. A comparative study of artificial bee colony algorithm[J]. Applied Mathematics and Computation, 2009, 214(1): 108-132. |
[21] | WANG H, WU Z J, RAHNAMAYAN S, et al. Multi-strategy ensemble artificial bee colony algorithm[J]. Infor-mation Sciences, 2014, 279(20): 587-603. |
[22] | GAO W F, HUANG L L, WANG J, et al. Enhanced artifi-cial bee colony algorithm through differential evolution[J]. Applied Soft Computing, 2016, 48: 137-150. |
[23] | 于佐军, 秦欢. 基于改进蜂群算法的K-means算法[J]. 控制与决策, 2018, 33(1): 181-185. |
YU Z J, QIN H. K-means algorithm based on improved arti-fificial bee colony algorithm[J]. Control and Decision, 2018, 33(1): 181-185. | |
[24] | CUI L Z, LI G H, ZHU Z X, et al. A novel artificial bee colony algorithm with an adaptive population size for nume-rical function optimization[J]. Information Sciences, 2017, 414: 53-67. |
[25] | 王学恩, 韩德强, 韩崇昭. 采用不确定性度量的粗糙模糊C均值聚类参数获取方法[J]. 西安交通大学学报, 2013, 47(6): 55-60. |
WANG X E, HAN D Q, HAN C Z. Selection method for parameters of rough fuzzy C-means clustering based on uncer-tainty measurement[J]. Journal of Xi’an Jiaotong Univer-sity, 2013, 47(6): 55-60. |
[1] | GENG Lu, LI Yanjuan. Artificial Bee Colony Algorithm Combining JADE and CoDE Difference Operators [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(12): 2103-2116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/