Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (7): 1552-1560.DOI: 10.3778/j.issn.1673-9418.2101031
• Service Computing • Previous Articles Next Articles
LIU Chunhong1,2,+(), ZHANG Zhihua1, JIAO Jie1, CHENG Bo3
Received:
2020-12-02
Revised:
2021-01-29
Online:
2022-07-01
Published:
2021-02-05
Supported by:
作者简介:
刘春红(1969—),女,博士,副教授,主要研究方向为云计算、机器学习、服务计算。 基金资助:
CLC Number:
LIU Chunhong, ZHANG Zhihua, JIAO Jie, CHENG Bo. Structured Prediction Method for Small Sample Workload Sequences[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1552-1560.
刘春红, 张志华, 焦洁, 程渤. 小样本负载序列的结构化预测方法[J]. 计算机科学与探索, 2022, 16(7): 1552-1560.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2101031
类别 | 资源名称 |
---|---|
待预测资源 | 平均CPU利用率(mean CPU usage rate)、规范内存使用(canonical memory usage)、平均使用的本地磁盘空间(mean local disk space used) |
参与选择的其他资源 | 最大CPU使用(maximum CPU usage,maxCPU)、最大磁盘I/O时间(maximum disk I/O time,maxDiskIO)、平均磁盘I/O时间(mean disk I/O time,meanDiskIO)、分配内存使用(assigned memory usage,aMem)、最大内存使用(maximum memory usage,maxMem)、未映射页面缓存内存使用(unmapped page cache memory usage,unPCM)和页面缓存内存使用总量(total page cache memory usage,toPCM) |
Table 1 Experimental data objects
类别 | 资源名称 |
---|---|
待预测资源 | 平均CPU利用率(mean CPU usage rate)、规范内存使用(canonical memory usage)、平均使用的本地磁盘空间(mean local disk space used) |
参与选择的其他资源 | 最大CPU使用(maximum CPU usage,maxCPU)、最大磁盘I/O时间(maximum disk I/O time,maxDiskIO)、平均磁盘I/O时间(mean disk I/O time,meanDiskIO)、分配内存使用(assigned memory usage,aMem)、最大内存使用(maximum memory usage,maxMem)、未映射页面缓存内存使用(unmapped page cache memory usage,unPCM)和页面缓存内存使用总量(total page cache memory usage,toPCM) |
待预测负载类型 | 其他负载类型(从大到小) |
---|---|
CPU | CPU、内存、meanDiskIO、aMem、maxDiskIO、maxCPU、unPCM、maxMem、toPCM、磁盘 |
内存 | 内存、CPU、meanDiskIO、aMem、maxMem、toPCM、unPCM、maxDiskIO、maxCPU、磁盘 |
磁盘 | 磁盘、CPU、aMem、内存、meanDiskIO、maxDiskIO、maxCPU、unPCM、maxMem、toPCM |
Table 2 Statistical results of correlation between load to be predicted and other load types
待预测负载类型 | 其他负载类型(从大到小) |
---|---|
CPU | CPU、内存、meanDiskIO、aMem、maxDiskIO、maxCPU、unPCM、maxMem、toPCM、磁盘 |
内存 | 内存、CPU、meanDiskIO、aMem、maxMem、toPCM、unPCM、maxDiskIO、maxCPU、磁盘 |
磁盘 | 磁盘、CPU、aMem、内存、meanDiskIO、maxDiskIO、maxCPU、unPCM、maxMem、toPCM |
阶段 | RMSE | MAE | MRE | SMAPE |
---|---|---|---|---|
V3 | 6.403 8E-04 | 4.970 9E-04 | 0.015 4 | 0.007 7 |
V4 | 6.515 2E-04 | 4.812 9E-04 | 0.015 0 | 0.007 5 |
V5 | 6.229 2E-04 | 4.529 1E-04 | 0.014 1 | 0.007 1 |
V6 | 5.298 3E-04 | 3.750 1E-04 | 0.011 7 | 0.005 9 |
Table 3 Forecast results at different stages
阶段 | RMSE | MAE | MRE | SMAPE |
---|---|---|---|---|
V3 | 6.403 8E-04 | 4.970 9E-04 | 0.015 4 | 0.007 7 |
V4 | 6.515 2E-04 | 4.812 9E-04 | 0.015 0 | 0.007 5 |
V5 | 6.229 2E-04 | 4.529 1E-04 | 0.014 1 | 0.007 1 |
V6 | 5.298 3E-04 | 3.750 1E-04 | 0.011 7 | 0.005 9 |
方法 | RMSE | MAE | MRE | SMAPE |
---|---|---|---|---|
SP-MWS | 5.136 8E-04 | 3.695 0E-04 | 0.011 1 | 0.005 6 |
多元线性 | 0.001 3 | 7.830 1E-04 | 0.023 5 | 0.011 9 |
P-SVR | 0.001 7 | 0.001 3 | 0.037 6 | 0.019 2 |
M-LSTM | 0.002 0 | 0.001 4 | 0.040 0 | 0.020 5 |
Table 4 Comparison of CPU prediction errors under different methods
方法 | RMSE | MAE | MRE | SMAPE |
---|---|---|---|---|
SP-MWS | 5.136 8E-04 | 3.695 0E-04 | 0.011 1 | 0.005 6 |
多元线性 | 0.001 3 | 7.830 1E-04 | 0.023 5 | 0.011 9 |
P-SVR | 0.001 7 | 0.001 3 | 0.037 6 | 0.019 2 |
M-LSTM | 0.002 0 | 0.001 4 | 0.040 0 | 0.020 5 |
方法 | RMSE | MAE | MRE | SMAPE |
---|---|---|---|---|
SP-MWS | 0.001 5 | 9.117 0E-04 | 0.010 9 | 0.005 4 |
多元线性 | 0.003 2 | 0.001 8 | 0.020 7 | 0.010 5 |
P-SVR | 0.001 2 | 9.252 2E-04 | 0.011 0 | 0.005 5 |
M-LSTM | 0.002 4 | 0.002 0 | 0.023 6 | 0.011 8 |
Table 5 Comparison of memory prediction errors under different methods
方法 | RMSE | MAE | MRE | SMAPE |
---|---|---|---|---|
SP-MWS | 0.001 5 | 9.117 0E-04 | 0.010 9 | 0.005 4 |
多元线性 | 0.003 2 | 0.001 8 | 0.020 7 | 0.010 5 |
P-SVR | 0.001 2 | 9.252 2E-04 | 0.011 0 | 0.005 5 |
M-LSTM | 0.002 4 | 0.002 0 | 0.023 6 | 0.011 8 |
方法 | RMSE | MAE | MRE | SMAPE |
---|---|---|---|---|
SP-MWS | 2.233 3E-04 | 1.368 4E-04 | 0.012 7 | 0.006 4 |
多元线性 | 6.399 7E-04 | 4.585 7E-04 | 0.044 5 | 0.022 5 |
P-SVR | 0.001 1 | 7.655 8E-04 | 0.079 1 | 0.038 1 |
M-LSTM | 0.002 2 | 0.001 6 | 0.169 4 | 0.084 2 |
Table 6 Comparison of disk prediction errors under different methods
方法 | RMSE | MAE | MRE | SMAPE |
---|---|---|---|---|
SP-MWS | 2.233 3E-04 | 1.368 4E-04 | 0.012 7 | 0.006 4 |
多元线性 | 6.399 7E-04 | 4.585 7E-04 | 0.044 5 | 0.022 5 |
P-SVR | 0.001 1 | 7.655 8E-04 | 0.079 1 | 0.038 1 |
M-LSTM | 0.002 2 | 0.001 6 | 0.169 4 | 0.084 2 |
方法 | 时间/s |
---|---|
SP-MWS | 0.023 7 |
多元线性 | 0.016 6 |
P-SVR | 0.376 1 |
M-LSTM | 19.255 2 |
Table 7 Forecasting time of three resources under different methods (sliding window is 60)
方法 | 时间/s |
---|---|
SP-MWS | 0.023 7 |
多元线性 | 0.016 6 |
P-SVR | 0.376 1 |
M-LSTM | 19.255 2 |
方法 | 时间/s |
---|---|
SP-MWS | 0.018 8 |
多元线性 | 0.015 6 |
P-SVR | 0.372 9 |
M-LSTM | 11.044 8 |
Table 8 Forecasting time of three resources under different methods (sliding window is 30)
方法 | 时间/s |
---|---|
SP-MWS | 0.018 8 |
多元线性 | 0.015 6 |
P-SVR | 0.372 9 |
M-LSTM | 11.044 8 |
[1] |
AL-DHURAIBI Y, PARAISO F, DJARALLAH N, et al. Ela-sticity in cloud computing: state of the art and research chal-lenges[J]. IEEE Transactions on Services Computing, 2018, 11(2): 430-447.
DOI URL |
[2] | COUTINHO E F, DE CARVALHO SOUSA F R, REGO P A L, et al. Elasticity in cloud computing: a survey[J]. Anna-les des Télécommunications, 2015, 70(7/8): 289-309. |
[3] | CALHEIROS R N, MASOUMI E, RANJAN R, et al. Work-load prediction using ARIMA model and its impact on cloud applications’ QoS[J]. IEEE Transactions on Cloud Compu-ting, 2015, 3(4): 449-458. |
[4] |
LIU C H, LIU C C, SHANG Y L, et al. An adaptive predic-tion approach based on workload pattern discrimination in the cloud[J]. Journal of Network and Computer Applications, 2017, 80: 35-44.
DOI URL |
[5] |
NGUYEN H M, GAURAV K, DAEYOUNG K. Host load prediction in cloud computing using long short-term memory encoder-decoder[J]. The Journal of Supercomputing, 2019, 75(11): 7592-7605.
DOI URL |
[6] |
HIEU N T, DI FRANCESCO M, YLÄ-JÄÄSKI A. Virtual machine consolidation with multiple usage prediction for energy-efficient cloud data centers[J]. IEEE Transactions on Services Computing, 2020, 13(1): 186-199.
DOI URL |
[7] | TRAN N, NGUYEN T, NGUYEN B M, et al. A multivariate fuzzy time series resource forecast model for clouds using LSTM and data correlation analysis[C]// Proceedings of the 22nd International Conference KES-2018, Belgrade, Sep 3-5, 2018. New York: Elsevier Science, 2018: 636-645. |
[8] | ISLAM S, KEUNG J, LEE K, et al. Empirical prediction mo-dels for adaptive resource provisioning in the cloud[J]. Fu-ture Generation Computer Systems, 2012, 28(1): 155-162. |
[9] | REISS C, TUMANOV A, GANGER G R, et al. Heterogeneity and dynamicity of clouds at scale: Google trace analysis[C]// Proceedings of the 2012 ACM Symposium on Cloud Compu-ting, San Jose, Oct 14-17, 2012. New York: ACM, 2012: 1-13. |
[10] | VERGARA J R, ESTEVEZ P. A review of feature selec-tion methods based on mutual information[J]. Neural Com-puting & Applications, 2014, 24(1): 175-186. |
[11] | 张俐, 袁玉宇, 王枞. 基于最大相关信息系数的FCBF特征选择算法[J]. 北京邮电大学学报, 2018, 41(4): 86-90. |
ZHANG L, YUAN Y Y, WANG C. FCBF feature selection algorithm based on maximum information coefficient[J]. Journal of Beijing University of Posts and Telecom-munications, 2018, 41(4): 86-90. | |
[12] | 殷怡. 复杂时间序列的相关性及信息熵研究[D]. 北京: 北京交通大学, 2018. |
YIN Y. Study on the correlation and information entropy of complex time series[D]. Beijing: Beijing Jiaotong Univer-sity, 2018. | |
[13] | 王二威, 瞿英, 吴祈宗. 基于信息熵的软件可靠性多模型动态预测方法[J]. 桂林理工大学学报, 2016, 36(3): 603-608. |
WANG E W, QU Y, WU Q Z. Multi-model dynamic predic-tion method of software reliability based on information entropy[J]. Journal of Guilin University of Technology, 2016, 36(3): 603-608. | |
[14] | REISS C, WILKES J, HELLERSTEIN J L. Google cluster-usage traces: format+schema[Z]. Google Inc., 2011: 1-14. |
[15] | DOU C X, BIAN Z W, ZHANG T F. Short-term photovo-ltaic output forecasting based on multivariable phase space reconstruction and support vector regression[C]// Proceedings of the 5th IEEE International Conference on Cloud Com-puting and Intelligence Systems, Nanjing, Nov 23-25, 2018. Piscataway: IEEE, 2018: 983-987. |
[16] | RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?”: explaining the predictions of any classifier[C]// Proceedings of the Demonstrations Session, the 2016 Confe-rence of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 1135-1144. |
[17] | STRUMBELJ E, KONONENKO I. Explaining prediction models and individual predictions with feature contributions[J]. Knowledge & Information Systems, 2014, 41(3): 647-665. |
[1] | ZHENG Lianghan, HE Heng, TONG Qian, YANG Xiang, CHEN Xiang. Multi-authority Access Control Scheme in Cloud Environment [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1865-1878. |
[2] | ZHANG Shengxia, TIAN Chengliang. Security Outsourcing Algorithms by Unimodular Matrix Encryption Method [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 73-82. |
[3] | CHEN Yantong, PEI Shujun, MIAO Hui. Cost-Optimized Scheduling Algorithm for Cloud Scientific Workflow with Deadline Constraint [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1307-1318. |
[4] | REN Xiaoli, YANG Jianwei, LI Naiqian. Secure Storage Based on Dynamic Virtualization of Electronic Stream Cipher Oriented Cloud Computing [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1331-1340. |
[5] | ZHAO Qian, XIE Shangqin, HAN Ke, GONG Qingze, FENG Guangsheng, LIN Junyu. Container Migration Based on Combination of Remote Direct Memory Access and Check Point [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(12): 1995-2007. |
[6] | LV Xiaojing, LIU Zhao, JIANG Lingwen, CHEN Dexun, YANG Guangwen. Parallel Optimization Strategy for Three-Dimensional Sono-Elasticity of Ships [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(11): 1852-1863. |
[7] | LI Yong, TENG Fei, HUANG Qichuan, LI Tianrui. Parallel Time Series Decomposition Algorithm Based on Spark [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(7): 1055-1063. |
[8] | PEI Shujun, SONG Dongmei, KONG Dekai. Application of Fast Pruning Algorithm in Map/Reduce for Complex Tasks Scheduling [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(1): 72-81. |
[9] | LIU Peidong, AN Bo, ZHONG Yehong, WANG Hu, CAO Donggang. Virtual Cluster Based Resource Sharing Approach for Private Cloud Environment [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(8): 1204-1213. |
[10] | WANG Hongxu, WU Bin, LIU Yang. Parallel Graph Data Analysis System Based on Spark [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(9): 1066-1074. |
[11] | SONG Baoyan, LI Xuecheng, REN Cai, DING Linlin. Layered Intermediate Data Fault-Tolerance Approach in Cloud [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(5): 546-554. |
[12] | LIU Wenmao, QIU Xiaofeng, CHEN Pengcheng, WEN Xutao, HE Xinxin, WANG Dongsheng, LI Jun. SDN Oriented Software-Defined Security Architecture [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(1): 63-70. |
[13] | YU Jiong, LIAO Bin, ZHANG Tao, SUN Hua, GUO Binglei, YANG Xingyao. A Survey on Energy-Efficient Cloud Storage System [J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(9): 1025-1040. |
[14] | YANG Rong, LI Bing, DU Baotong, XIONG Wei, HE Peng. Adaptive Service Selection Method with Atomic Transactions and QoS Constraints [J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(5): 582-592. |
[15] | SHI Jingang, ZHENG Yan, SUN Huanliang, LUAN Fangjun. Parallel Processing of Block Cipher for Massive Data in Cloud Computing [J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(2): 161-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/