Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (10): 2405-2414.DOI: 10.3778/j.issn.1673-9418.2102073
• Graphics and Image • Previous Articles
Received:
2021-03-01
Revised:
2021-06-07
Online:
2022-10-01
Published:
2021-06-23
About author:
ZHANG Haitao, born in 1974, Ph.D., profes-sor, M.S. supervisor, member of CCF. His resea-rch interests include machine learning, graphics and image processing, etc.Supported by:
通讯作者:
+ E-mail: 1149278938@qq.com作者简介:
张海涛(1974—),男,博士,教授,硕士生导师,CCF会员,主要研究方向为机器学习、图形图像处理等。基金资助:
CLC Number:
ZHANG Haitao, CHAI Simin. Improved Two-Branch Capsule Network for Hyperspectral Image Classification[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2405-2414.
张海涛, 柴思敏. 改进双分支胶囊网络的高光谱图像分类[J]. 计算机科学与探索, 2022, 16(10): 2405-2414.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2102073
Hyper-parameter | Optimized value |
---|---|
Optimizer | Adam |
Number of epochs | 100 |
Dropout | 0.2 |
Learning rate | 0.01 |
Learning rate decay | 0.9 |
PCA | 5 |
| 0.5 |
| 0.9 |
| 0.1 |
Table 1 Hyper-parameters used for training proposed DuB-ConvCapsNet-MRF
Hyper-parameter | Optimized value |
---|---|
Optimizer | Adam |
Number of epochs | 100 |
Dropout | 0.2 |
Learning rate | 0.01 |
Learning rate decay | 0.9 |
PCA | 5 |
| 0.5 |
| 0.9 |
| 0.1 |
Class | SVM | 2D-CNN | 3D- CNN | DCD-CNN | CNN-MRF | Caps-MRF | Proposed |
---|---|---|---|---|---|---|---|
1 | 77.88 | 95.67 | 98.16 | 98.45 | 90.08 | 89.92 | 97.72 |
2 | 0 | 94.31 | 97.86 | 98.77 | 96.91 | 98.49 | 99.31 |
3 | 25.16 | 91.76 | 99.85 | 96.95 | 97.86 | 97.62 | 96.26 |
4 | 68.17 | 81.38 | 98.13 | 98.13 | 96.81 | 98.84 | 99.46 |
5 | 46.54 | 98.46 | 98.64 | 100.00 | 97.54 | 99.91 | 100.00 |
6 | 80.77 | 99.42 | 100.00 | 98.03 | 99.35 | 98.87 | 98.13 |
7 | 35.97 | 96.47 | 99.46 | 92.24 | 92.00 | 96.56 | 97.51 |
8 | 97.07 | 100.00 | 99.51 | 100.00 | 99.46 | 100.00 | 98.16 |
9 | 45.00 | 62.46 | 60.00 | 60.00 | 68.48 | 71.79 | 73.26 |
10 | 71.70 | 95.78 | 97.89 | 99.67 | 98.60 | 99.78 | 100.00 |
11 | 86.92 | 97.32 | 98.67 | 98.92 | 97.91 | 99.17 | 99.84 |
12 | 61.73 | 93.78 | 100.00 | 99.41 | 98.46 | 98.82 | 97.94 |
13 | 91.85 | 97.89 | 98.87 | 100.00 | 100.00 | 100.00 | 100.00 |
14 | 96.40 | 99.67 | 99.46 | 97.21 | 95.84 | 98.26 | 98.82 |
15 | 45.53 | 87.61 | 99.21 | 99.16 | 100.00 | 99.16 | 98.63 |
16 | 82.81 | 88.63 | 96.16 | 89.71 | 85.61 | 99.25 | 92.17 |
OA | 77.63 | 95.13 | 98.45 | 98.37 | 97.15 | 98.53 | 98.74 |
AA | 63.34 | 92.54 | 96.37 | 95.36 | 94.68 | 96.65 | 96.70 |
Kappa | 84.21 | 94.91 | 98.71 | 98.23 | 98.31 | 98.47 | 98.93 |
训练 时间/s | 12 | 2 426 | 33 413 | 3 120 | 5 124 | 21 670 | 13 268 |
Table 2 Classification results of different
Class | SVM | 2D-CNN | 3D- CNN | DCD-CNN | CNN-MRF | Caps-MRF | Proposed |
---|---|---|---|---|---|---|---|
1 | 77.88 | 95.67 | 98.16 | 98.45 | 90.08 | 89.92 | 97.72 |
2 | 0 | 94.31 | 97.86 | 98.77 | 96.91 | 98.49 | 99.31 |
3 | 25.16 | 91.76 | 99.85 | 96.95 | 97.86 | 97.62 | 96.26 |
4 | 68.17 | 81.38 | 98.13 | 98.13 | 96.81 | 98.84 | 99.46 |
5 | 46.54 | 98.46 | 98.64 | 100.00 | 97.54 | 99.91 | 100.00 |
6 | 80.77 | 99.42 | 100.00 | 98.03 | 99.35 | 98.87 | 98.13 |
7 | 35.97 | 96.47 | 99.46 | 92.24 | 92.00 | 96.56 | 97.51 |
8 | 97.07 | 100.00 | 99.51 | 100.00 | 99.46 | 100.00 | 98.16 |
9 | 45.00 | 62.46 | 60.00 | 60.00 | 68.48 | 71.79 | 73.26 |
10 | 71.70 | 95.78 | 97.89 | 99.67 | 98.60 | 99.78 | 100.00 |
11 | 86.92 | 97.32 | 98.67 | 98.92 | 97.91 | 99.17 | 99.84 |
12 | 61.73 | 93.78 | 100.00 | 99.41 | 98.46 | 98.82 | 97.94 |
13 | 91.85 | 97.89 | 98.87 | 100.00 | 100.00 | 100.00 | 100.00 |
14 | 96.40 | 99.67 | 99.46 | 97.21 | 95.84 | 98.26 | 98.82 |
15 | 45.53 | 87.61 | 99.21 | 99.16 | 100.00 | 99.16 | 98.63 |
16 | 82.81 | 88.63 | 96.16 | 89.71 | 85.61 | 99.25 | 92.17 |
OA | 77.63 | 95.13 | 98.45 | 98.37 | 97.15 | 98.53 | 98.74 |
AA | 63.34 | 92.54 | 96.37 | 95.36 | 94.68 | 96.65 | 96.70 |
Kappa | 84.21 | 94.91 | 98.71 | 98.23 | 98.31 | 98.47 | 98.93 |
训练 时间/s | 12 | 2 426 | 33 413 | 3 120 | 5 124 | 21 670 | 13 268 |
MRF | 2D-ConvCaps/ 1D-ConvCaps | PCA | OA/% | Kappa/% |
---|---|---|---|---|
√ | 92.13 | 90.76 | ||
√ | √ | 93.79 | 92.82 | |
√ | √ | 97.21 | 96.48 | |
√ | √ | √ | 98.74 | 98.93 |
Table 3 Classification accuracy of models in different situations on IP dataset
MRF | 2D-ConvCaps/ 1D-ConvCaps | PCA | OA/% | Kappa/% |
---|---|---|---|---|
√ | 92.13 | 90.76 | ||
√ | √ | 93.79 | 92.82 | |
√ | √ | 97.21 | 96.48 | |
√ | √ | √ | 98.74 | 98.93 |
MRF | 2D-ConvCaps/ 1D-ConvCaps | PCA | OA/% | Kappa/% |
---|---|---|---|---|
√ | 93.94 | 91.90 | ||
√ | √ | 95.76 | 93.58 | |
√ | √ | 98.13 | 97.16 | |
√ | √ | √ | 99.61 | 99.34 |
Table 4 Classification accuracy of models in different situations on UP dataset
MRF | 2D-ConvCaps/ 1D-ConvCaps | PCA | OA/% | Kappa/% |
---|---|---|---|---|
√ | 93.94 | 91.90 | ||
√ | √ | 95.76 | 93.58 | |
√ | √ | 98.13 | 97.16 | |
√ | √ | √ | 99.61 | 99.34 |
class | SVM | 2D-CNN | 3D-CNN | DCD-CNN | CNN-MRF | Caps-MRF | Proposed |
---|---|---|---|---|---|---|---|
1 | 75.45 | 87.61 | 99.65 | 98.75 | 97.41 | 99.97 | 99.46 |
2 | 92.41 | 88.57 | 99.17 | 99.16 | 97.25 | 98.46 | 99.43 |
3 | 96.23 | 89.42 | 94.76 | 100.00 | 90.64 | 98.72 | 100.00 |
4 | 95.76 | 90.57 | 99.29 | 98.13 | 96.71 | 99.67 | 99.71 |
5 | 98.01 | 90.64 | 100.00 | 99.87 | 99.18 | 99.16 | 99.13 |
6 | 93.98 | 70.67 | 98.74 | 100.00 | 98.34 | 99.43 | 98.87 |
7 | 82.71 | 88.96 | 96.96 | 100.00 | 98.74 | 99.56 | 100.00 |
8 | 64.64 | 89.79 | 99.26 | 99.34 | 90.74 | 99.81 | 99.67 |
9 | 97.81 | 91.13 | 99.16 | 99.16 | 99.28 | 98.46 | 99.38 |
OA | 75.69 | 87.46 | 98.91 | 99.57 | 96.16 | 99.24 | 99.61 |
AA | 88.56 | 87.48 | 98.55 | 99.38 | 96.48 | 99.25 | 99.52 |
Kappa | 70.04 | 85.17 | 99.22 | 99.26 | 95.33 | 97.98 | 99.34 |
训练 时间/s | 46 | 7 261 | 100 496 | 9 346 | 14 962 | 63 570 | 39 715 |
Table 5 Classification results of different methods on UP dataset
class | SVM | 2D-CNN | 3D-CNN | DCD-CNN | CNN-MRF | Caps-MRF | Proposed |
---|---|---|---|---|---|---|---|
1 | 75.45 | 87.61 | 99.65 | 98.75 | 97.41 | 99.97 | 99.46 |
2 | 92.41 | 88.57 | 99.17 | 99.16 | 97.25 | 98.46 | 99.43 |
3 | 96.23 | 89.42 | 94.76 | 100.00 | 90.64 | 98.72 | 100.00 |
4 | 95.76 | 90.57 | 99.29 | 98.13 | 96.71 | 99.67 | 99.71 |
5 | 98.01 | 90.64 | 100.00 | 99.87 | 99.18 | 99.16 | 99.13 |
6 | 93.98 | 70.67 | 98.74 | 100.00 | 98.34 | 99.43 | 98.87 |
7 | 82.71 | 88.96 | 96.96 | 100.00 | 98.74 | 99.56 | 100.00 |
8 | 64.64 | 89.79 | 99.26 | 99.34 | 90.74 | 99.81 | 99.67 |
9 | 97.81 | 91.13 | 99.16 | 99.16 | 99.28 | 98.46 | 99.38 |
OA | 75.69 | 87.46 | 98.91 | 99.57 | 96.16 | 99.24 | 99.61 |
AA | 88.56 | 87.48 | 98.55 | 99.38 | 96.48 | 99.25 | 99.52 |
Kappa | 70.04 | 85.17 | 99.22 | 99.26 | 95.33 | 97.98 | 99.34 |
训练 时间/s | 46 | 7 261 | 100 496 | 9 346 | 14 962 | 63 570 | 39 715 |
| | |||||
---|---|---|---|---|---|---|
4 | 8 | 16 | 32 | 64 | 未降参 | |
64 | 354 816 | 709 632 | 1 419 264 | 2 838 528 | 5 677 056 | 4 956 160 |
32 | 281 088 | 562 176 | 1 124 352 | 2 248 704 | 4 497 408 | 2 478 080 |
16 | 244 224 | 488 448 | 976 896 | 1 953 792 | 3 907 584 | 1 239 040 |
Table 6 Amount of parameters brought by different number of vector groups for input and feature extraction
| | |||||
---|---|---|---|---|---|---|
4 | 8 | 16 | 32 | 64 | 未降参 | |
64 | 354 816 | 709 632 | 1 419 264 | 2 838 528 | 5 677 056 | 4 956 160 |
32 | 281 088 | 562 176 | 1 124 352 | 2 248 704 | 4 497 408 | 2 478 080 |
16 | 244 224 | 488 448 | 976 896 | 1 953 792 | 3 907 584 | 1 239 040 |
[1] | CAO X H, LI R J, GE Y M, et al. Densely connected deep random forest for hyperspectral imagery classification[J]. Inter-national Journal of Remote Sensing, 2019, 40(9): 3606-3622. |
[2] | LANTHIER Y, BANNARI A, HABOUDANE D, et al. Hy-perspectral data segmentation and classification in preci-sion agriculture: a multi-scale analysis[C]// Proceedings of the 2008 IEEE International Geoscience & Remote Sensing Symposium, Boston, Jul 8-11, 2008. Piscataway: IEEE, 2008: 585-588. |
[3] |
GHAMISI P, YOKOYA N, LI J, et al. Advances in hyper-spectral image and signal processing: a comprehensive over-view of the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 37-78.
DOI URL |
[4] | WANG Q, LIU S T, CHANUSSOT J, et al. Scene classifi-cation with recurrent attention of VHR remote sensing ima-ges[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2018, 57(2): 1155-1167. |
[5] | LANDGREBE D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1): 17-28. |
[6] |
FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 2012, 101(3): 652-675.
DOI URL |
[7] | HAM J, CHEN Y, CRAWFORD M M, et al. Investigation of the random forest framework for classification of hyper-spectral data[J]. IEE20E Transactions on Geoscience and Remote Sensing, 2005, 43(3): 492-501. |
[8] |
CHEN Y, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse represen-tation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985.
DOI URL |
[9] |
HAUT J M, PAOLETTI M, PLAZA J, et al. Cloud implemen-tation of the K-means algorithm for hyperspectral image analysis[J]. The Journal of Supercomputing, 2017, 73(1): 514-529.
DOI URL |
[10] | LIU W B, WANG Z D, LIU X H, et al. A survey of deep neural network architectures and their applications[J]. Neuro-computing, 2017, 234: 11-26. |
[11] |
CHEN Y S, LIN Z H, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094-2107.
DOI URL |
[12] | CHEN Y S, ZHAO X, JIA X P. Spectral-spatial classifica-tion of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Obser-vations and Remote Sensing, 2015, 8(6): 2381-2392. |
[13] |
万亚玲, 钟锡武, 刘慧, 等. 卷积神经网络在高光谱图像分类中的应用综述[J]. 计算机工程与应用, 2021, 57(4): 1-10.
DOI |
WAN Y L, ZHONG X W, LIU H, et al. Survey of applica-tion of convolutional neural network in classification of hyperspectral images[J]. Computer Engineering and Appli-cations, 2021, 57(4): 1-10. | |
[14] | MAKANTASIS K, KARANTZALOS K, DOULAMIS A D, et al. Deep supervised learning for hyperspectral data classi-fication through convolutional neural networks[C]// Procee-dings of the 2015 IEEE International Geoscience and Re-mote Sensing Symposium, Milan, Jul 26-31, 2015. Piscata-way: IEEE, 2015: 4959-4962. |
[15] |
HAMIDA A B, BENOIT A, LAMBERT P, et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4420-4434.
DOI URL |
[16] |
佘海龙, 解山娟, 邹静洁. 标准分数降维的3D-CNN高光谱遥感图像分类[J]. 计算机工程与应用, 2021, 57(4): 169-175.
DOI |
SHE H L, XIE S J, ZOU J J. 3D-CNN with standard score dimensionality reduction for hyperspectral remote sensing images classification[J]. Computer Engineering and Appli-cations, 2021, 57(4): 169-175. | |
[17] |
XU X D, LI W, RAN Q, et al. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(2): 937-949.
DOI URL |
[18] |
刘启超, 肖亮, 刘芳, 等. SSCDenseNet: 一种空-谱卷积稠密网络的高光谱图像分类算法[J]. 电子学报, 2020, 48(4): 751-762.
DOI |
LIU Q C, XIAO L, LIU F, et al. SSCDenseNet: a spectral-spatial convolutional dense network for hyperspectral image classification[J]. Acta Electronica Sinica, 2020, 48(4): 751-762. | |
[19] | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[J]. arXiv:1710.09829, 2017. |
[20] | JIANG X F, LIU W B, ZHANG Y, et al. Spectral-spatial hy-perspectral image classification using dual-channel capsule networks[J]. IEEE Geoscience and Remote Sensing Let-ters, 2021, 18(6): 1094-1098. |
[21] |
JIANG X F, ZHANG Y, LIU W B, et al. Hyperspectral ima-ge classification with CapsNet and Markov random fields[J]. IEEE Access, 2020, 8: 191956-191968.
DOI URL |
[22] | ZHANG H T, MENG L G, WEI X, et al. 1D-convolutional capsule network for hyperspectral image classification[J]. arXiv:1903.09834, 2019. |
[23] | TARABALKA Y, FAUVEL M, CHANUSSOT J, et al. SVM- and MRF-based method for accurate classification of hy-perspectral images[J]. IEEE Geoscience and Remote Sen-sing Letters, 2010, 7(4): 736-740. |
[24] |
YUE J, ZHAO W Z, MAO S J, et al. Spectral-spatial clas-sification of hyperspectral images using deep convolutio-nal neural networks[J]. Remote Sensing Letters, 2015, 6(6): 468-477.
DOI URL |
[25] |
LI Y, ZHANG H K, SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67.
DOI URL |
[26] | 胡丽, 单锐, 王芳, 等. 基于双通道空洞卷积神经网络的高光谱图像分类[J]. 激光与光电子学进展, 2020, 57(12): 348-354. |
HU L, SHAN R, WANG F, et al. Hyperspectral image clas-sification based on dual-channel dilated convolution neural network[J]. Laser & Optoelectronics Progress, 2020, 57(12): 348-354. | |
[27] |
CAO X Y, ZHOU F, XU L, et al. Hyperspectral image classi-fication with Markov random fields and a convolutional neural network[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2354-2367.
DOI URL |
[1] | SHI Cheng, PAN Bin, GUO Xiaoming, LI Qinqin, ZHANG Luyue, ZHONG Fan. Application of Generative Adversarial Networks in Image Completion [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1402-1410. |
[2] | WANG Zhenhua, HE Wanwen, SUN Jingqi, QU Nianyi, HUANG Dongmei. Research on Improved Level Set Model for Island Boundary Rapid Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1206-1216. |
[3] | ZU Baokai, XIA Kewen, NIU Wenjia, JIANG Xiaoqing. Semi-Supervised Classification Application of Remote Sensing Image Based on Block Low-Rank Images [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1217-1226. |
[4] | JI Yan, LU Kewen, ZHANG Yinghui. Research on Distributed Clustering Storage Technology for Massive Remote Sensing Data [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(9): 1398-1404. |
[5] | ZHAO Na, WANG Huiqin, WU Meng. Criminisi Digital Inpainting Algorithm Based on Markov Random Field Matching Criterion [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(7): 1150-1158. |
[6] | CHEN Yixia, SUN Quansen, XU Huanyu, GENG Leilei. Matching Method of Remote Sensing Images Based on SURF Algorithm and RANSAC Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(9): 822-828. |
[7] | GAO Hui, ZHANG Maojun, XU Wei. 3D Reconstruction from Single Catadioptric Omnidirectional Image Assisted by Remote Sensing Image [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(2): 147-154. |
[8] | WU Hao1, LI Shijin1+, LIN Lin2, WAN Dingsheng1. Multiple-strategy Combination Based Approach to Band Selection for Hyper-spectral Image Classification* [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(5): 464-472. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/