[1] AMIT S. Introducing the knowledge graph[R]. America: Official Blog of Google, 2012.
[2] WIKIPEDIA. Knowledge graph[EB/OL]. [2021-03-21]. https://en.wikipedia.org/wiki/Knowledge_Graph.
[3] LI M D, SUN Z Y, ZHANG S H, et al. Enhancing knowledge graph embedding with relational constraints[J]. Neurocom- puting, 2020, 429: 33-40.
[4] LI Z F, LIU H, ZHANG Z L, et al. Recalibration convolu-tional networks for learning interaction knowledge graph embedding[J]. Neurocomputing, 2021, 427: 118-130.
[5] GONG F, WANG M, WANG H F, et al. SMR: medical know- ledge graph embedding for safe medicine recommendation[J]. Big Data Research, 2021, 23: 1-8.
[6] LU G M, ZHANG L Z, JIN M J, et al. Entity alignment via knowledge embedding and type matching constraints for knowledge graph inference[J]. Journal of Ambient Intelligence and Humanized Computing, 2021. DOI:10.1007/s12652-020-02821-2.
[7] WU Y L, ZHAO S L. Community answer generation based on knowledge graph[J]. Information Sciences, 2021, 545: 132-152.
[8] WANG J B, KUAN N, CHEN X Y, et al. SUKE: embed-ding model for prediction in uncertain knowledge graph[J]. IEEE Access, 2021, 9: 3871-3879.
[9] ZWIERZYNA M, FINAN C, DAVIES M, et al. A machine learning side effect prediction method using a comprehensive knowledge graph and network embeddings[C]//Proceedings of the British Pharmacology Society Meeting 2018, London, Dec 18-20, 2018. Hoboken: John Wiley & Sons, 2019: 3079.
[10] KIM K, HUR Y, KIM G, et al. GREG: a global level relation extraction with knowledge graph embedding[J]. Applied Sciences, 2020, 10(3): 1-12.
[11] CHAZARA P, NEGNY S, MONTASTRUC L. Flexible know-ledge representation and new similarity measure: applica-tion on case based reasoning for waste treatment[J]. Expert Systems with Applications, 2016, 58: 143-154.
[12] XIE Q Z, MA X Z, DAI Z H, et al. An interpretable know- ledge transfer model for knowledge base completion[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, ?Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 950-962.
[13] SHI B X, WENINGER T. ProjE: embedding projection for knowledge graph completion[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 1236-1242.
[14] JIANG T S, LIU T Y, GE T, et al. Encoding temporal infor-mation for time-aware link prediction[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-guage Processing, Austin, Nov 1-5, 2016. Stroudsburg: ACL, 2016: 2350-2354.
[15] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 327-333.
[16] BORDES A, USUNIER N, GARCíA-DURáN A, et al. Translating embeddings for modeling multi-relational data [C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795.
[17] XIAO H, HUANG M L, YU H, et al. TransA: an adaptive approach for knowledge graph embedding[J]. arXiv:1509.05490, 2015.
[18] LIN Y K, LIU Z Y, SUN M S, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187.
[19] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119.
[20] FAN M, ZHOU Q, CHANG E, et al. Transition-based know-ledge graph embedding with relational mapping properties [C]//Proceedings of the 28th Pacific Asia Conference on Language, Information and Computation, Phuket, Dec 12-14, 2014. Stroudsburg: ACL, 2014: 328-337.
[21] HE S Z, LIU K, JI G L, et al. Learning to represent know- ledge graphs with Gaussian embedding[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 623-632.
[22] BORDES A, WESTON J, COLLOBERT R, et al. Learning structured embeddings of knowledge bases[C]//Proceedings of the 25th AAAI Conference on Artificial Intelligence, San Francisco, Aug 7-11, 2011. Menlo Park: AAAI, 2011: 301-306.
[23] NICKEL M, TRESP V, KRIEGEL H. A three-way model for collective learning on multi-relational data[C]//Procee-dings of the 28th International Conference on Machine Learning, Washington, Jun 28-Jul 2, 2011. New York: ACM, 2011: 809-816.
[24] BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data: application to word-sense disambiguation[J]. Machine Learning, 2014, 94(2): 233-259.
[25] SOCHER R, CHEN D Q, MANNING C D, et al. Reason-ing with neural tensor networks for knowledge base com-pletion[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 926-934.
[26] XIAO H, CHEN Y D, SHI X D. Knowledge graph embed-ding based on multi-view clustering framework[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(2): 585-596.
[27] HUANG X, ZHANG J Y, LI D C, et al. Knowledge graph embedding based question answering[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 105-113.
[28] KANOJIA V, MAEDA H, TOGASHI R, et al. Enhancing know-ledge graph embedding with probabilistic negative sampling[C]//Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Apr 3-7, 2017. New York: ACM, 2017: 801-802.
[29] ZHANG W. Knowledge graph embedding with diversity of structures[C]//Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Apr 3-7, 2017. New York: ACM, 2017: 747-753.
[30] XIA X Q, ZHANG D H, LIU Q, et al. Synergistic union of word embedding and knowledge graph for words semantic similarity measure[C]//Proceedings of the 4th International Conference on Computer and Communications, Chengdu, Dec 7-10, 2018. Piscataway: IEEE, 2018: 2349-2353.
[31] TANG X L, YUAN R, LI Q Y, et al. Timespan-aware dynamic knowledge graph embedding by incorporating temporal evo-lution[J]. IEEE Access, 2020, 8: 6849-6860.
[32] HAN X, ZHANG C H, SUN T T, et al. A triple-branch neural network for knowledge graph embedding[J]. IEEE Access, 2018, 6: 76606-76615.
[33] PEI S C, YU L, HOEHNDORF R, et al. Semi-supervised entity alignment via knowledge graph embedding with awareness of degree difference[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3130-3136.
[34] ZHANG Y, CAO W H, LIU J T. A novel negative sample generating method for knowledge graph embedding[C]//Proceedings of the 2019 International Conference on Emb-edded Wireless Systems and Networks, Beijing, Feb 25-27, 2019. New York: ACM, 2019: 401-406.
[35] LEE G, KANG S, WHANG J J. Hyperlink classification via structured graph embedding[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 1017-1020.
[36] ZHANG D H, HE Y C, WANG Y P, et al. Knowledge graph embedding based on multi-information fusion[C]//Procee-dings of the 2019 IEEE International Conference on Com-puter Science and Educational Informatization, Kunming, Aug 16-19, 2019. Piscataway: IEEE, 2019: 310-314.
[37] SHAN Y C, BU C Y, LIU X J, et al. Confidence-aware negative sampling method for noisy knowledge graph embed-ding[C]//Proceedings of the 2018 IEEE International Con-ference on Big Knowledge, Singapore, Nov 17-18, 2018. Washington: IEEE Computer Society, 2018: 33-40.
[38] CHEN Q K, CHEN K, WU S, et al. Research about know-ledge graph completion based on active learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 769-782.
陈钦况, 陈珂, 伍赛, 等. 关于主动学习下的知识图谱补全研究[J]. 计算机科学与探索, 2020, 14(5): 769-782.
[39] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080.
[40] DETTMERS T, MINERVINI P, STENETORP P, et al. Con-volutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 1811-1818.
[41] WANG Z H, SHAO M G, LIU G J, et al. Knowledge map completion algorithm based on similar entity relationship[J]. Computer Application, 2018. DOI:10.11772/j.issn.1001-9081. 2018041238.
王子涵, 邵明光, 刘国军, 等. 基于同类实体关系的知识图谱补全算法[J]. 计算机应用, 2018. DOI:10.11772/j.issn. 1001-9081.2018041238.
[42] REN L J, LU J, GUO W. Multi-source knowledge embed-ding research of knowledge graph[C]//Proceedings of the 3rd International Conference on Circuits, Systems and Devices, Chengdu, Aug 23-25, 2019. Piscataway: IEEE, 2019: 163-166.
[43] WANG R J, WANG M, LIU J, et al. Graph embedding based query construction over knowledge graphs[C]//Proceedings of the 2018 IEEE International Conference on Big Know-ledge, Singapore, Nov 17-18, 2018. Washington: IEEE Com-puter Society, 2018: 1-8.
[44] YANG H, XIE G G, QIN Y, et al. Domain specific NMT based on knowledge graph embedding and attention[C]//Proceedings of the 21st International Conference on Advanced Communication Technology, PyeongChang, Feb 17-20, 2019. Piscataway: IEEE, 2019: 516-521.
[45] NIU G L, LI B, ZHANG Y F, et al. AutoETER: automated entity type representation with relation-aware attention for knowledge graph embedding[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 1172-1181.
[46] KRIZHEVSHY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[47] SHI J, GAO H, QI G L, et al. Knowledge graph embedding with triple context[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 2299-2302.
[48] ZHANG M Y, WANG Q, XU W K, et al. Discriminative path-based knowledge graph embedding for precise link prediction[C]//LNCS 10772: Proceedings of the 40th Euro-pean Conference on Information Retrieval, Grenoble, Mar 26-29, 2018. Cham: Springer, 2018: 276-288.
[49] DU W Q, LI B C, WANG R. Representation learning of knowledge graph integrating entity description and entity type[J]. Journal of Chinese Information Processing, 2020, 34(7): 50-59.
杜文倩, 李弼程, 王瑞. 融合实体描述及类型的知识图谱表示学习方法[J]. 中文信息学报, 2020, 34(7): 50-59.
[50] ZHU Q N, ZHOU X F, ZHANG P, et al. A neural translat-ing general hyperplane for knowledge graph embedding[J]. Journal of Computational Science, 2019, 30: 108-117.
[51] CHEN X J, XIANG Y. STransH: a revised translation-based model for knowledge representation[J]. Computer Science, 2019, 46(9): 184-189.
陈晓军, 向阳. STransH: 一种改进的基于翻译模型的知识表示模型[J]. 计算机科学, 2019, 46(9): 184-189.
[52] XIAO H, HUANG M L, ZHU X Y. TransG: a generative model for knowledge graph embedding[C]//Proceedings of the 54th Annual Meeting of the Association for Computa-tional Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 2316-2325.
[53] WANG R, LI B C, HU S W, et al. Knowledge graph embed-ding via graph attenuated attention networks[J]. IEEE Access, 2020, 8: 5212-5224.
[54] GUO S, WNAG Q, WANG B, et al. SSE: semantically smooth embedding for knowledge graphs[J]. IEEE Transac-tions on Knowledge and Data Engineering, 2017, 29(4): 884-897.
[55] XIE R B, LIU Z Y, SUN M S. Representation learning of knowledge graphs with hierarchical types[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 2965-2971.
[56] XIE R B, LIU Z Y, JIA J, et al. Representation learning of knowledge graphs with entity descriptions[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 2659-2665.
[57] FENG J, HUANG M L, YANG Y, et al. GAKE: graph aware knowledge embedding[C]//Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Dec 11-16, 2016. Stroudsburg: ACL, 2016: 641-651.
[58] GUO S, WANG Q, WANG L H, et al. Jointly embedding knowledge graphs and logical rules[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 192-202.
[59] MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[60] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, Jun 9-12, 2008. New York: ACM, 2008: 1247-1250.
[61] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Mode-ling relational data with graph convolutional networks[C]//LNCS 10843: Proceedings of the 15th International Conference on Extended Semantic Web Conference, Heraklion, Jun 3-7, 2018. Cham: Springer, 2018: 593-607.
[62] ZHANG Q J, WANG R G, JUAN Y, et al. Knowledge graph embedding by translating in time domain space for link prediction[J]. Knowledge-Based Systems, 2021, 212: 106564.
[63] LIU Z Y, SUN M S, LIN Y K, et al. Knowledge repre-sentation learning: a review[J]. Journal of Computer Research and Development, 2016, 53(2): 247-261.
刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2): 247-261. |