Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (11): 2596-2608.DOI: 10.3778/j.issn.1673-9418.2105108
• Graphics and Image • Previous Articles Next Articles
WANG Haotong1, GUO Zhonghua1,2,+()
Received:
2021-05-27
Revised:
2021-07-19
Online:
2022-11-01
Published:
2021-07-26
About author:
WANG Haotong, born in 1995, M.S. candidate. His research interests include computer vision and image processing.Supported by:
通讯作者:
+ E-mail: guozhh@nxu.edu.cn作者简介:
王浩桐(1995—),男,宁夏人,硕士研究生,主要研究方向为计算机视觉、图像处理。基金资助:
CLC Number:
WANG Haotong, GUO Zhonghua. Target Detection of SSD Aircraft Remote Sensing Images Based on Anchor Frame Strategy Matching[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2596-2608.
王浩桐, 郭中华. 锚框策略匹配的SSD飞机遥感图像目标检测[J]. 计算机科学与探索, 2022, 16(11): 2596-2608.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2105108
Training data | Test data | mAP/% | |
---|---|---|---|
VGG16 | ResNet101 | ||
VOC 2007+VOC 2012 | VOC 2007 | 73.2 | 76.4 |
VOC 2012 | 70.4 | 73.8 |
Table 1 Test results of different feature extraction networks on PASCAL VOC 2007/2012
Training data | Test data | mAP/% | |
---|---|---|---|
VGG16 | ResNet101 | ||
VOC 2007+VOC 2012 | VOC 2007 | 73.2 | 76.4 |
VOC 2012 | 70.4 | 73.8 |
特征层 | 特征层尺寸 | 理论感受野 | 锚框铺设步长 | 锚框尺度 | 锚框宽高比 | 锚框铺设密度 |
---|---|---|---|---|---|---|
Conv1 | 75×75 | 35×35 | 4 | 8,12 | 1 | 2,3 |
Conv2 | 38×38 | 187×187 | 8 | 24 | 1, 2/3, 3/5 | 3 |
Conv3 | 19×19 | 203×203 | 16 | 48 | 1, 2/3, 3/5 | 3 |
Conv4 | 10×10 | 235×235 | 30 | 90 | 1, 2/3, 3/5 | 3 |
Conv5 | 5×5 | 299×299 | 60 | 180 | 1, 2/3, 3/5 | 3 |
Conv6 | 3×3 | 427×427 | 100 | 240 | 1, 2/3, 3/5 | 3 |
Conv7 | 1×1 | 555×555 | 300 | 300 | 1, 2/3, 3/5 | 1 |
Table 2 Information about anchor frame
特征层 | 特征层尺寸 | 理论感受野 | 锚框铺设步长 | 锚框尺度 | 锚框宽高比 | 锚框铺设密度 |
---|---|---|---|---|---|---|
Conv1 | 75×75 | 35×35 | 4 | 8,12 | 1 | 2,3 |
Conv2 | 38×38 | 187×187 | 8 | 24 | 1, 2/3, 3/5 | 3 |
Conv3 | 19×19 | 203×203 | 16 | 48 | 1, 2/3, 3/5 | 3 |
Conv4 | 10×10 | 235×235 | 30 | 90 | 1, 2/3, 3/5 | 3 |
Conv5 | 5×5 | 299×299 | 60 | 180 | 1, 2/3, 3/5 | 3 |
Conv6 | 3×3 | 427×427 | 100 | 240 | 1, 2/3, 3/5 | 3 |
Conv7 | 1×1 | 555×555 | 300 | 300 | 1, 2/3, 3/5 | 1 |
(a) | 2 | 12 | 3,9 | 6.0 | -3,3 |
(b) | 2 | 33 | 3,30 | 16.5 | -13.5,13.5 |
Table 3 Statistical information
(a) | 2 | 12 | 3,9 | 6.0 | -3,3 |
(b) | 2 | 33 | 3,30 | 16.5 | -13.5,13.5 |
Method | Backbone | AP/% | FPS | |
---|---|---|---|---|
IOU=0.50,area=all | IOU=0.50:0.95,area=small | |||
Faster-RCNN+FPN | VGG16 | 91.35 | 40.56 | 3.4 |
YOLO | GoogleNet | 78.25 | 28.64 | 49.6 |
YOLO v2[ | DarkNet19 | 84.36 | 33.46 | 42.8 |
YOLO v3 | DarkNet53 | 88.14 | 38.22 | 38.6 |
SSD | VGG16 | 88.72 | 39.65 | 41.3 |
DSSD[ | ResNet101 | 89.55 | 41.25 | 26.5 |
AMDSSD | ResNet50 | 91.15 | 41.36 | 33.4 |
Table 4 AP and FPS of different algorithms on aircraft remote sensing images
Method | Backbone | AP/% | FPS | |
---|---|---|---|---|
IOU=0.50,area=all | IOU=0.50:0.95,area=small | |||
Faster-RCNN+FPN | VGG16 | 91.35 | 40.56 | 3.4 |
YOLO | GoogleNet | 78.25 | 28.64 | 49.6 |
YOLO v2[ | DarkNet19 | 84.36 | 33.46 | 42.8 |
YOLO v3 | DarkNet53 | 88.14 | 38.22 | 38.6 |
SSD | VGG16 | 88.72 | 39.65 | 41.3 |
DSSD[ | ResNet101 | 89.55 | 41.25 | 26.5 |
AMDSSD | ResNet50 | 91.15 | 41.36 | 33.4 |
Method | AP/%(IOU=0.50, area=all) |
---|---|
SSD | 88.74 |
SSD+ResNet50(改) | 89.36 |
Table 5 Ablation experiment results of skeleton network replacement
Method | AP/%(IOU=0.50, area=all) |
---|---|
SSD | 88.74 |
SSD+ResNet50(改) | 89.36 |
Method | AP/%(IOU=0.50,area=all) |
---|---|
SSD+ResNet50(改) | 89.36 |
SSD+ResNet50(改)+锚框密集 | 90.58 |
SSD+ResNet50(改)+锚框密集+锚框策略匹配 | 91.15 |
Table 6 Results of ablation experiments matching anchor frame densification and anchor frame strategy
Method | AP/%(IOU=0.50,area=all) |
---|---|
SSD+ResNet50(改) | 89.36 |
SSD+ResNet50(改)+锚框密集 | 90.58 |
SSD+ResNet50(改)+锚框密集+锚框策略匹配 | 91.15 |
[1] | 史文旭, 谭代伦, 鲍胜利. 特征增强SSD算法及其在遥感目标检测中的应用[J]. 光子学报, 2020, 49(1): 148-157. |
SHI W X, TAN D L, BAO S L. Feature enhancement SSD algorithm and its application in remote sensing images target detection[J]. Acta Photonica Sinica, 2020, 49(1): 148-157. | |
[2] | 林娜, 冯丽蓉, 张小青. 基于优化Faster-RCNN的遥感影像飞机检测[J]. 遥感技术与应用, 2021, 36(2): 275-284. |
LIN N, FENG L R, ZHANG X Q. Aircraft detection in remote sensing image based on optimized Faster-RCNN[J]. Remote Sensing Technology and Application, 2021, 36(2): 275-284. | |
[3] | KRIZHEVSK Y A, SUTSKEVER I, HINTON G. Image-Net classification with deep convolution neural network[C]// Advances in Neural Information Processing Systems 25, Lake Tahoe, Dec 3-6, 2012: 1106-1114. |
[4] | GIRSHICK R B. Fast R-CNN[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1440-1448. |
[5] | REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intell-igence, 2017, 39(6): 1137-1149. |
[6] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]// Procee-dings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Wash-ington: IEEE Computer Society, 2016: 779-788. |
[7] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37. |
[8] |
董旭彬, 赵清华. 改进Mask R-CNN在航空影像目标检测的研究应用[J]. 计算机工程与应用, 2021, 57(8): 133-144.
DOI |
DONG X B, ZHAO Q H. Research and application of improved Mask R-CNN in aerial image target detection[J]. Computer Engineering and Applications, 2021, 57(8): 133-144.
DOI |
|
[9] | 郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40(11): 2684-2690. |
GUO Z, SONG P, ZHANG Y, et al. Aircraft detection met-hod based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2684-2690. | |
[10] | 王冰, 周焰, 张怀念, 等. 基于改进SSD框架的遥感影像飞机目标检测方法[J]. 火力与指挥控制, 2021, 46(1): 14-19. |
WANG B, ZHOU Y, ZHANG H N, et al. Aircraft detection method based on SSD framework for remote sensing im-ages[J]. Fire Control & Command Control, 2021, 46(1): 14-19. | |
[11] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recog-nition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778. |
[12] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014. |
[13] |
黄国新, 李炜, 张比浩, 等. 改进SSD的机场场面多尺度目标检测算法[J]. 计算机工程与应用, 2022, 58(5): 264-270.
DOI |
HUANG G X, LI W, ZHANG B H, et al. Improved SSD-based multi-scale object detection algorithm in airport surface[J]. Computer Engineering and Applications, 2022, 58(5): 264-270.
DOI |
|
[14] | 邹慧海, 侯进. 基于改进SSD算法的道路小目标检测研究[J]. 计算机工程, 2022, 48(5): 281-288. |
ZOU H H, HOU J. Research on road small target detection with improved SSD algorithm[J]. Computer Engineering, 2022, 48(5): 281-288. | |
[15] | 刘建伟, 赵会丹, 罗雄麟, 等. 深度学习批归一化及其相关算法研究进展[J]. 自动化学报, 2020, 46(6): 1090-1120. |
LIU J W, ZHAO H D, LUO X L, et al. Research progress on batch normalization of deep learning and its related algorithms[J]. Acta Automatica Sinica, 2020, 46(6): 1090-1120. | |
[16] | XU J, LI Z, DU B, et al. Reluplex made more practical: Leaky ReLU[C]// Proceedings of the 2020 IEEE Symposium on Computers and Communications, Rennes, Jul 7-10, 2020. Piscataway: IEEE, 2020: 1-7. |
[17] | LUO W J, LI Y J. Understanding the effective receptive field in deep convolutional neural networks[J] arXiv: 1701.04128, 2017. |
[18] | 陆保国, 梁博, 马焕芳. 光学遥感影像飞机目标识别与分类方法[J]. 指挥信息系统与技术, 2020, 11(5): 78-82. |
LU B G, LIANG B, MA H F. Optical remote sensing image aircraft target recognition and classification method[J]. Command Information System and Technology, 2020, 11(5): 78-82. | |
[19] | ZHANG S F, WANG X B, LEI Z, et al. FaceBoxes: a CPU real-time and accurate unconstrained face detector[J]. Neuro-computing, 2019, 7: 6-16. |
[20] | ZHANG S F, ZHU X Y, LEI Z, et al. S3FD: single shot scale-invariant face detector[J]. arXiv:1708.05237, 2017. |
[21] | LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 99: 2999-3007. |
[22] | 欧攀, 张正, 路奎, 等. 基于卷积神经网络的遥感图像目标检测[J]. 激光与光电子学进展, 2019, 56(5): 66-72. |
OU P, ZHANG Z, LU K, et al. Object detection of remote sensing images based on convolutional neural networks[J]. Laser & Optoelectronics Progress, 2019, 56(5): 66-72. | |
[23] | LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recog-nition, Honolulu, Jul 21-26, 2017. Washington: IEEE Com-puter Society, 2017: 936-944. |
[24] | REDMON J, FARHADI A. YOLOv3: an incremental improve-ment[J]. arXiv:1804.02767, 2018. |
[25] | REDMON J, FARHADI A. YOLO9000: better, faster, stron-ger[C]// Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6517-6525. |
[26] | FU C, LIU W, RANGA A, et al. DSSD: deconvolutional single shot detector[J]. arXiv:1701.06659, 2017. |
[27] |
李明山, 韩清鹏, 张天宇, 等. 改进SSD的安全帽检测方法[J]. 计算机工程与应用, 2021, 57(8): 192-197.
DOI |
LI M S, HAN Q P, ZHANG T Y, et al. Safety helmet detection method of improved SSD[J]. Computer Engine-ering and Applications, 2021, 57(8): 192-197. |
[1] | CHEN Haoran, PENG Li, LI Wentao, DAI Feifei. Small Object Detection Algorithm Based on Weighted Network [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2143-2150. |
[2] | PENG Hao, LI Xiaoming. Multi-scale Selection Pyramid Networks for Small-Sample Target Detection Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(7): 1649-1660. |
[3] | DONG Wenxuan, LIANG Hongtao, LIU Guozhu, HU Qiang, YU Xu. Review of Deep Convolution Applied to Target Detection Algorithms [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1025-1042. |
[4] | QIAN Wu, WANG Guozhong, LI Guoping. Improved YOLOv5 Traffic Light Real-Time Detection Robust Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 231-241. |
[5] | SONG Yanyan, TAN Li, MA Zihao, REN Xueping. Video Target Detection Based on Improved YOLOV3 Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 163-172. |
[6] | LIN Qiang, ZHANG Linjun, XIE Ailing, WANG Weilan. Personalized Real-Time Detection of Unsafe Boundary Transgression [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 1017-1027. |
[7] | HUANG Zhijun, SANG Qingbing. Ship Detection Based on Improved R-FCN [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 1045-1053. |
[8] | JIANG Xinlan. Rail Fastener Detection Method Based on Structured Region Full Convolution Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1888-1898. |
[9] | ZU Baokai, XIA Kewen, NIU Wenjia, JIANG Xiaoqing. Semi-Supervised Classification Application of Remote Sensing Image Based on Block Low-Rank Images [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1217-1226. |
[10] | REN Yujie, YANG Jian, LIU Fangtao, ZHANG Qiyao. Research on Target Detection Method Based on SSD and MobileNet Network [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(11): 1881-1893. |
[11] | FANG Feng, CAI Zhiping, ZHAO Qijia, LIN Jiarun, ZHU Ming. Adaptive Technique for Real-Time DDoS Detection and Defense Using Spark Streaming [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(5): 601-611. |
[12] | CHEN Yixia, SUN Quansen, XU Huanyu, GENG Leilei. Matching Method of Remote Sensing Images Based on SURF Algorithm and RANSAC Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(9): 822-828. |
[13] | GAO Hui, ZHANG Maojun, XU Wei. 3D Reconstruction from Single Catadioptric Omnidirectional Image Assisted by Remote Sensing Image [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(2): 147-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/