Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (1): 1-20.DOI: 10.3778/j.issn.1673-9418.2107029
• Surveys and Frontiers • Previous Articles Next Articles
PAN Yuliang1,2, GUAN Jihong1,+(), YAO Heng1,2, SHI Yunjia1,2, ZHOU Shuigeng3,4
Received:
2021-06-08
Revised:
2021-08-05
Online:
2022-01-01
Published:
2021-08-09
About author:
PAN Yuliang, born in 1992. Ph.D. candidate, student member of CCF. His research interests include data mining and computational biology.Supported by:
潘玉亮1,2, 关佶红1,+(), 姚恒1,2, 石运佳1,2, 周水庚3,4
通讯作者:
+ E-mail: jhguan@tongji.edu.cn作者简介:
潘玉亮(1992—),男,博士研究生,CCF学生会员,主要研究方向为数据挖掘、计算生物学。基金资助:
CLC Number:
PAN Yuliang, GUAN Jihong, YAO Heng, SHI Yunjia, ZHOU Shuigeng. Computational Methods for Protein Complex Prediction: A Survey[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 1-20.
潘玉亮, 关佶红, 姚恒, 石运佳, 周水庚. 基于计算的蛋白质复合物预测方法综述[J]. 计算机科学与探索, 2022, 16(1): 1-20.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2107029
类别 | 方法名 | 链接 |
---|---|---|
基于局部密集子图预测算法 | MCODE[ | |
ClusterOne[ | ||
DPClus[ | ||
RNSC[ | ||
IPCA[ | ||
Clique[ | ||
CFinder[ | ||
CMC[ | ||
MCL[ | ||
NEOComplex[ | ||
GraphEntropy[ | ||
ProRank+[ | ||
SPICi[ | ||
基于核心-附属结构的预测算法 | CORE[ | |
COACH[ | ||
EWCA[ | ||
基于动态网络的预测算法 | Zhang等[ | |
基于监督学习的预测算法 | Qi等[ | |
从功能到互作的预测算法 | CPredictor2.0[ | |
CPredictor3.0[ | ||
CPredictor5.0[ | ||
基于多源数据的预测算法 | SGNMF[ | |
IdenPC-CAP[ | ||
其他预测算法 | EnsemHC[ | — |
Table 1 Summary of main methods and source code for protein complex prediction
类别 | 方法名 | 链接 |
---|---|---|
基于局部密集子图预测算法 | MCODE[ | |
ClusterOne[ | ||
DPClus[ | ||
RNSC[ | ||
IPCA[ | ||
Clique[ | ||
CFinder[ | ||
CMC[ | ||
MCL[ | ||
NEOComplex[ | ||
GraphEntropy[ | ||
ProRank+[ | ||
SPICi[ | ||
基于核心-附属结构的预测算法 | CORE[ | |
COACH[ | ||
EWCA[ | ||
基于动态网络的预测算法 | Zhang等[ | |
基于监督学习的预测算法 | Qi等[ | |
从功能到互作的预测算法 | CPredictor2.0[ | |
CPredictor3.0[ | ||
CPredictor5.0[ | ||
基于多源数据的预测算法 | SGNMF[ | |
IdenPC-CAP[ | ||
其他预测算法 | EnsemHC[ | — |
数据库 | 网址 |
---|---|
STRING[ | |
DIP[ | |
BioGRID[ | |
IntAct[ |
Table 2 Protein-protein interaction databases
数据库 | 网址 |
---|---|
STRING[ | |
DIP[ | |
BioGRID[ | |
IntAct[ |
数据集 | 蛋白质数量 | 蛋白质相互作用 |
---|---|---|
Gavin[ | 1 855 | 7 669 |
Krogan[ | 2 674 | 7 075 |
Collins[ | 1 622 | 9 074 |
Table 3 Protein-protein interaction data sets
数据集 | 蛋白质数量 | 蛋白质相互作用 |
---|---|---|
Gavin[ | 1 855 | 7 669 |
Krogan[ | 2 674 | 7 075 |
Collins[ | 1 622 | 9 074 |
数据集 | 蛋白质数量 | 复合物数量 |
---|---|---|
MIPS[ | 1 627 | 349 |
CYC2008[ | 1 237 | 313 |
Table 4 Protein complex data sets
数据集 | 蛋白质数量 | 复合物数量 |
---|---|---|
MIPS[ | 1 627 | 349 |
CYC2008[ | 1 237 | 313 |
算法 | 复合物数量 | 小复合物 | 大复合物 | 复合物平均大小 |
---|---|---|---|---|
MCODE[ | 111 | 36 | 75 | 7.7 |
ClusterOne[ | 315 | 171 | 144 | 5.4 |
DPClus[ | 335 | 219 | 116 | 4.5 |
RNSC[ | 489 | 397 | 92 | 3.1 |
CORE[ | 299 | 256 | 43 | 2.6 |
Zhang等[ | 496 | 284 | 212 | 5.3 |
MCL[ | 297 | 190 | 107 | 5.4 |
SPICi[ | 174 | 68 | 106 | 6.5 |
CMC[ | 173 | 0 | 173 | 10.8 |
EWCA[ | 659 | 71 | 588 | 21.6 |
IPCA[ | 580 | 212 | 368 | 14.6 |
COACH[ | 246 | 43 | 203 | 17.7 |
GraphEntropy[ | 350 | 209 | 141 | 5.8 |
Clique[ | 490 | 146 | 344 | 9.1 |
ProRank+[ | 659 | 93 | 566 | 20.2 |
CFinder[ | 114 | 43 | 71 | 10.6 |
CPredictor[ | 230 | 118 | 122 | 6.3 |
CPredictor2.0[ | 764 | 525 | 239 | 3.9 |
CPredictor3.0[ | 203 | 37 | 166 | 12.3 |
CPredictor4.0[ | 408 | 215 | 193 | 5.7 |
CPredictor5.0[ | 485 | 284 | 201 | 4.8 |
Table 5 Attribute comparison of protein complexes for different computational methods on Collins data set
算法 | 复合物数量 | 小复合物 | 大复合物 | 复合物平均大小 |
---|---|---|---|---|
MCODE[ | 111 | 36 | 75 | 7.7 |
ClusterOne[ | 315 | 171 | 144 | 5.4 |
DPClus[ | 335 | 219 | 116 | 4.5 |
RNSC[ | 489 | 397 | 92 | 3.1 |
CORE[ | 299 | 256 | 43 | 2.6 |
Zhang等[ | 496 | 284 | 212 | 5.3 |
MCL[ | 297 | 190 | 107 | 5.4 |
SPICi[ | 174 | 68 | 106 | 6.5 |
CMC[ | 173 | 0 | 173 | 10.8 |
EWCA[ | 659 | 71 | 588 | 21.6 |
IPCA[ | 580 | 212 | 368 | 14.6 |
COACH[ | 246 | 43 | 203 | 17.7 |
GraphEntropy[ | 350 | 209 | 141 | 5.8 |
Clique[ | 490 | 146 | 344 | 9.1 |
ProRank+[ | 659 | 93 | 566 | 20.2 |
CFinder[ | 114 | 43 | 71 | 10.6 |
CPredictor[ | 230 | 118 | 122 | 6.3 |
CPredictor2.0[ | 764 | 525 | 239 | 3.9 |
CPredictor3.0[ | 203 | 37 | 166 | 12.3 |
CPredictor4.0[ | 408 | 215 | 193 | 5.7 |
CPredictor5.0[ | 485 | 284 | 201 | 4.8 |
算法 | 复合物数量 | 小复合物 | 大复合物 | 复合物平均大小 |
---|---|---|---|---|
MCODE[ | 94 | 31 | 63 | 11.9 |
ClusterOne[ | 196 | 20 | 176 | 7.5 |
DPClus[ | 418 | 297 | 121 | 3.6 |
RNSC[ | 304 | 56 | 248 | 8.2 |
CORE[ | 413 | 226 | 187 | 4.7 |
Zhang等[ | 447 | 236 | 211 | 3.8 |
MCL[ | 320 | 148 | 172 | 5.7 |
SPICi[ | 149 | 72 | 77 | 4.2 |
CMC[ | 616 | 327 | 289 | 4.3 |
EWCA[ | 913 | 120 | 793 | 11.2 |
IPCA[ | 920 | 595 | 325 | 4.5 |
COACH[ | 360 | 120 | 240 | 5.6 |
GraphEntropy[ | 434 | 236 | 198 | 4.8 |
Clique[ | 1 148 | 346 | 802 | 5.7 |
ProRank+[ | 525 | 80 | 445 | 12.5 |
CFinder[ | 48 | 38 | 10 | 3.2 |
CPredictor[ | 197 | 76 | 121 | 7.3 |
CPredictor2.0[ | 698 | 360 | 338 | 3.8 |
CPredictor3.0[ | 320 | 114 | 206 | 7.7 |
CPredictor4.0[ | 303 | 140 | 163 | 5.6 |
CPredictor5.0[ | 336 | 189 | 147 | 3.9 |
Table 6 Attribute comparison of protein complexes for different computational methods on Gavin data set
算法 | 复合物数量 | 小复合物 | 大复合物 | 复合物平均大小 |
---|---|---|---|---|
MCODE[ | 94 | 31 | 63 | 11.9 |
ClusterOne[ | 196 | 20 | 176 | 7.5 |
DPClus[ | 418 | 297 | 121 | 3.6 |
RNSC[ | 304 | 56 | 248 | 8.2 |
CORE[ | 413 | 226 | 187 | 4.7 |
Zhang等[ | 447 | 236 | 211 | 3.8 |
MCL[ | 320 | 148 | 172 | 5.7 |
SPICi[ | 149 | 72 | 77 | 4.2 |
CMC[ | 616 | 327 | 289 | 4.3 |
EWCA[ | 913 | 120 | 793 | 11.2 |
IPCA[ | 920 | 595 | 325 | 4.5 |
COACH[ | 360 | 120 | 240 | 5.6 |
GraphEntropy[ | 434 | 236 | 198 | 4.8 |
Clique[ | 1 148 | 346 | 802 | 5.7 |
ProRank+[ | 525 | 80 | 445 | 12.5 |
CFinder[ | 48 | 38 | 10 | 3.2 |
CPredictor[ | 197 | 76 | 121 | 7.3 |
CPredictor2.0[ | 698 | 360 | 338 | 3.8 |
CPredictor3.0[ | 320 | 114 | 206 | 7.7 |
CPredictor4.0[ | 303 | 140 | 163 | 5.6 |
CPredictor5.0[ | 336 | 189 | 147 | 3.9 |
算法 | Collins | Gavin | ||||
---|---|---|---|---|---|---|
Recall | Precision | F1 | Recall | Precision | F1 | |
MCODE[ | 0.26 | 0.71 | 0.38 | 0.18 | 0.56 | 0.27 |
ClusterOne[ | 0.55 | 0.59 | 0.57 | 0.37 | 0.61 | 0.46 |
DPClus[ | 0.55 | 0.64 | 0.60 | 0.35 | 0.36 | 0.35 |
RNSC[ | 0.56 | 0.50 | 0.53 | 0.47 | 0.44 | 0.45 |
CORE[ | 0.47 | 0.52 | 0.49 | 0.46 | 0.36 | 0.40 |
Zhang等[ | 0.57 | 0.62 | 0.59 | 0.48 | 0.50 | 0.48 |
MCL[ | 0.55 | 0.56 | 0.56 | 0.41 | 0.39 | 0.40 |
SPICi[ | 0.35 | 0.63 | 0.45 | 0.29 | 0.62 | 0.40 |
CMC[ | 0.24 | 0.60 | 0.34 | 0.49 | 0.33 | 0.39 |
EWCA[ | 0.33 | 0.69 | 0.44 | 0.39 | 0.53 | 0.45 |
IPCA[ | 0.56 | 0.59 | 0.58 | 0.54 | 0.32 | 0.40 |
COACH[ | 0.32 | 0.63 | 0.42 | 0.38 | 0.37 | 0.37 |
GraphEntropy[ | 0.55 | 0.55 | 0.55 | 0.38 | 0.37 | 0.37 |
Clique[ | 0.34 | 0.39 | 0.36 | 0.41 | 0.30 | 0.35 |
ProRank+[ | 0.34 | 0.66 | 0.45 | 0.36 | 0.60 | 0.45 |
CFinder[ | 0.40 | 0.63 | 0.49 | 0.20 | 0.48 | 0.29 |
CPredictor[ | 0.47 | 0.66 | 0.55 | 0.38 | 0.62 | 0.48 |
CPredictor2.0[ | 0.56 | 0.64 | 0.60 | 0.48 | 0.52 | 0.50 |
CPredictor3.0[ | 0.54 | 0.70 | 0.61 | 0.52 | 0.55 | 0.53 |
CPredictor4.0[ | 0.56 | 0.73 | 0.63 | 0.43 | 0.72 | 0.54 |
CPredictor5.0[ | 0.60 | 0.61 | 0.61 | 0.52 | 0.54 | 0.52 |
Table 7 Comparison of protein complex prediction results for various methods on CYC2008 standard set
算法 | Collins | Gavin | ||||
---|---|---|---|---|---|---|
Recall | Precision | F1 | Recall | Precision | F1 | |
MCODE[ | 0.26 | 0.71 | 0.38 | 0.18 | 0.56 | 0.27 |
ClusterOne[ | 0.55 | 0.59 | 0.57 | 0.37 | 0.61 | 0.46 |
DPClus[ | 0.55 | 0.64 | 0.60 | 0.35 | 0.36 | 0.35 |
RNSC[ | 0.56 | 0.50 | 0.53 | 0.47 | 0.44 | 0.45 |
CORE[ | 0.47 | 0.52 | 0.49 | 0.46 | 0.36 | 0.40 |
Zhang等[ | 0.57 | 0.62 | 0.59 | 0.48 | 0.50 | 0.48 |
MCL[ | 0.55 | 0.56 | 0.56 | 0.41 | 0.39 | 0.40 |
SPICi[ | 0.35 | 0.63 | 0.45 | 0.29 | 0.62 | 0.40 |
CMC[ | 0.24 | 0.60 | 0.34 | 0.49 | 0.33 | 0.39 |
EWCA[ | 0.33 | 0.69 | 0.44 | 0.39 | 0.53 | 0.45 |
IPCA[ | 0.56 | 0.59 | 0.58 | 0.54 | 0.32 | 0.40 |
COACH[ | 0.32 | 0.63 | 0.42 | 0.38 | 0.37 | 0.37 |
GraphEntropy[ | 0.55 | 0.55 | 0.55 | 0.38 | 0.37 | 0.37 |
Clique[ | 0.34 | 0.39 | 0.36 | 0.41 | 0.30 | 0.35 |
ProRank+[ | 0.34 | 0.66 | 0.45 | 0.36 | 0.60 | 0.45 |
CFinder[ | 0.40 | 0.63 | 0.49 | 0.20 | 0.48 | 0.29 |
CPredictor[ | 0.47 | 0.66 | 0.55 | 0.38 | 0.62 | 0.48 |
CPredictor2.0[ | 0.56 | 0.64 | 0.60 | 0.48 | 0.52 | 0.50 |
CPredictor3.0[ | 0.54 | 0.70 | 0.61 | 0.52 | 0.55 | 0.53 |
CPredictor4.0[ | 0.56 | 0.73 | 0.63 | 0.43 | 0.72 | 0.54 |
CPredictor5.0[ | 0.60 | 0.61 | 0.61 | 0.52 | 0.54 | 0.52 |
[1] |
EISENBERG D, MARCOTTE E M, XENARIOS I, et al. Protein function in the post-genomic era[J]. Nature, 2000, 405(6788):823-826.
DOI URL |
[2] | 李敏, 孟祥茂. 动态蛋白质网络的构建, 分析及应用研究进展[J]. 计算机研究与发展, 2017, 54(6):1281-1299. |
LI M, MENG X M. The construction, analysis, and applications of dynamic protein-protein interaction networks[J]. Journal of Computer Research and Development, 2017, 54(6):1281-1299. | |
[3] | 王杰, 梁吉业, 郑文萍. 一种面向蛋白质复合体检测的图聚类方法[J]. 计算机研究与发展, 2015, 52(8):1784. |
WANG J, LIANG J Y, ZHENG W P. A graph clustering method for detecting protein complexes[J]. Journal of Computer Research and Development, 2015, 52(8):1784. | |
[4] |
RIGAUT G, SHEVCHENKO A, RUTZ B, et al. A generic protein purification method for protein complex characterization and proteome exploration[J]. Nature Biotechnology, 1999, 17(10):1030-1032.
DOI URL |
[5] |
AEBERSOLD R, MANN M. Mass spectrometry-based proteomics[J]. Nature, 2003, 422(6928):198-207.
DOI URL |
[6] |
ITO T, CHIBA T, OZAWA R, et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome[J]. Proceedings of the National Academy of Sciences, 2001, 98(8):4569-4574.
DOI URL |
[7] |
UETZ P, GIOT L, CAGNEY G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae[J]. Nature, 2000, 403(6770):623-627.
DOI URL |
[8] |
GAVIN A C, BÖSCHE M, KRAUSE R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes[J]. Nature, 2002, 415(6868):141-147.
DOI URL |
[9] | 李舟军, 陈义明, 刘军万, 等. 蛋白质相互作用研究中的计算方法综述[J]. 计算机研究与发展, 2008, 45(12):2129-2137. |
LI Z J, CHEN Y M, LIU J W, et al. A survey of computational method in protein-protein interaction research[J]. Journal of Computer Research and Development, 2008, 45(12):2129-2137. | |
[10] |
PAN Y, LIU D, DENG L. Accurate prediction of functional effects for variants by combining gradient tree boosting with optimal neighborhood properties[J]. PLoS One, 2017, 12(6):e0179314.
DOI URL |
[11] |
PAN Y, ZHOU S, GUAN J. Computationally identifying hot spots in protein-DNA binding interfaces using an ensemble approach[J]. BMC Bioinformatics, 2020, 21(13):1-16.
DOI URL |
[12] |
GIRVAN M, NEWMAN M J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences, 2002, 99(12):7821-7826.
DOI URL |
[13] |
NEWMAN M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6):066133.
DOI URL |
[14] | RADICCHI F, CASTELLANO C, CECCONI F, et al. Defining and identifying communities in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9):2658-2663. |
[15] |
DUNN R, DUDBRIDGE F, SANDERSON C M. The use of edge-betweenness clustering to investigate biological function in protein interaction networks[J]. BMC Bioinformatics, 2005, 6(1):39.
DOI URL |
[16] |
YOON J, BLUMER A, LEE K. An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality[J]. Bioinformatics, 2006, 22(24):3106-3108.
DOI URL |
[17] |
PALLA G, DERÉNYI I, FARKAS I, et al. Uncovering the overlapping community structure of complex networks in nature and society[J]. Nature, 2005, 435(7043):814-818.
DOI URL |
[18] |
WANG R, LIU G, WANG C. Identifying protein complexes based on an edge weight algorithm and core-attachment structure[J]. BMC Bioinformatics, 2019, 20(1):1-20.
DOI URL |
[19] |
YAO H, SHI Y, GUAN J, et al. Accurately detecting protein complexes by graph embedding and combining functions with interactions[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2019, 17(3):777-787.
DOI URL |
[20] |
WANG R, WANG C, LIU G. A novel graph clustering method with a greedy heuristic search algorithm for mining protein complexes from dynamic and static PPI networks[J]. Information Sciences, 2020, 522:275-298.
DOI URL |
[21] |
JALILI S, MARASHI S A. CAMWI: detecting protein complexes using weighted clustering coefficient and weighted density[J]. Computational Biology and Chemistry, 2015, 58:231-240.
DOI URL |
[22] |
TANG X, WANG J, LIU B, et al. A comparison of the functional modules identified from time course and static PPI network data[J]. BMC Bioinformatics, 2011, 12(1):339.
DOI URL |
[23] |
WANG J, PENG X, LI M, et al. Construction and application of dynamic protein interaction network based on time course gene expression data[J]. Proteomics, 2013, 13(2):301-312.
DOI URL |
[24] |
QI Y, BALEM F, FALOUTSOS C, et al. Protein complex identification by supervised graph local clustering[J]. Bioinformatics, 2008, 24(13):i250-i268.
DOI URL |
[25] | YONG C H, WONG L, MARUYAMA O. Discovery of small protein complexes from PPI networks with size-specific supervised weighting[J]. BMC Systems Biology, 2014, 8(5):S3. |
[26] |
XU B, GUAN J. From function to interaction: a new paradigm for accurately predicting protein complexes based on protein-to-protein interaction networks[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(4):616-627.
DOI URL |
[27] |
XU B, WANG Y, WANG Z, et al. An effective approach to detecting both small and large complexes from protein-protein interaction networks[J]. BMC Bioinformatics, 2017, 18(12):419.
DOI URL |
[28] |
CHEN B, FAN W, LIU J, et al. Identifying protein complexes and functional modules—from static PPI networks to dynamic PPI networks[J]. Briefings in Bioinformatics, 2013, 15(2):177-194.
DOI URL |
[29] |
WU Z, LIAO Q, LIU B. A comprehensive review and evaluation of computational methods for identifying protein complexes from protein-protein interaction networks[J]. Briefings in Bioinformatics, 2020, 21(5):1531-1548.
DOI URL |
[30] | 于杨. 基于静态网络的蛋白质复合物预测方法综述[J]. 软件工程与应用, 2018, 7(3):151-159. |
YU Y. A survey of computational methods for protein complexes prediction based on static PPI networks[J]. Software Engineering and Applications, 2018, 7(3):151-159. | |
[31] | 代启国, 郭茂祖. 基于蛋白质网络的复合体识别研究综述[J]. 智能计算机与应用, 2015, 5(3):1-3. |
DAI Q G, GUO M Z. Survey on detecting complexes from protein-protein interaction network[J]. Intelligent Computer and Applications, 2015, 5(3):1-3. | |
[32] |
PAN Y, WANG Z, ZHAN W, et al. Computational identification of binding energy hot spots in protein-RNA complexes using an ensemble approach[J]. Bioinformatics, 2018, 34(9):1473-1480.
DOI URL |
[33] |
GAO Y, YAN L, HUANG Y, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus[J]. Science, 2020, 368(6492):779-782.
DOI URL |
[34] |
BARABASI A L, OLTVAI Z N. Network biology: understanding the cell’s functional organization[J]. Nature Reviews Genetics, 2004, 5(2):101-113.
DOI URL |
[35] | 郭茂祖, 代启国, 徐立秋, 等. 一种蛋白质复合体模块度函数及其识别算法[J]. 计算机研究与发展, 2014, 51(10):2178-2186. |
GUO M Z, DAI Q G, XU L Q, et al. On protein complexes identifying algorithm based on the novel modularity function[J]. Journal of Computer Research and Development, 2014, 51(10):2178-2186. | |
[36] |
BADER G D, HOGUE C W V. An automated method for finding molecular complexes in large protein interaction networks[J]. BMC Bioinformatics, 2003, 4(1):2.
DOI URL |
[37] |
PEREIRA-LEAL J B, ENRIGHT A J, OUZOUNIS C A. Prediction of functional modules from protein interaction networks[J]. Proteins: Structure, Function, and Bioinformatics, 2004, 54(1):49-57.
DOI URL |
[38] |
NEPUSZ T, YU H, PACCANARO A. Detecting overlapping protein complexes in protein-protein interaction networks[J]. Nature Methods, 2012, 9(5):471-472.
DOI URL |
[39] |
KENLEY E C, CHO Y R. Detecting protein complexes and functional modules from protein interaction networks: a graph entropy approach[J]. Proteomics, 2011, 11(19):3835-3844.
DOI URL |
[40] |
SPIRIN V, MIRNY L A. Protein complexes and functional modules in molecular networks[J]. Proceedings of the National Academy of Sciences, 2003, 100(21):12123-12128.
DOI URL |
[41] | LI X L, FOO C S, TAN S H, et al. Interaction graph mining for protein complexes using local clique merging[J]. Genome Informatics, 2005, 16(2):260-269. |
[42] |
ADAMCSEK B, PALLA G, FARKAS I J, et al. CFinder: locating cliques and overlapping modules in biological networks[J]. Bioinformatics, 2006, 22(8):1021-1023.
DOI URL |
[43] |
WANG Y, QIAN X. Finding low-conductance sets with dense interactions (FLCD) for better protein complex prediction[J]. BMC Systems Biology, 2017, 11(3):22.
DOI URL |
[44] |
OMRANIAN S, ANGELESKA A, NIKOLOSKI Z. PC2P: parameter-free network-based prediction of protein complexes[J]. Bioinformatics, 2021, 37(1):73-81.
DOI URL |
[45] |
SHEN X, ZHAO Y, LI Y, et al. An integrated approach to identify protein complex based on best neighbour and modularity increment[J]. International Journal of Data Mining and Bioinformatics, 2015, 11(4):458-473.
DOI URL |
[46] |
DIMITRAKOPOULOS C, THEOFILATOS K, PEGKAS A, et al. Predicting overlapping protein complexes from weighted protein interaction graphs by gradually expanding dense neighborhoods[J]. Artificial Intelligence in Medicine, 2016, 71:62-69.
DOI URL |
[47] |
LI P, HE T, HU X, et al. A novel protein complex identification algorithm based on connected affinity clique extension (CACE)[J]. IEEE Transactions on Nanobioscience, 2014, 13(2):89-96.
DOI URL |
[48] | UCAR D, ASUR S, ÇATALYÜREK Ü V, et al. Improving functional modularity in protein-protein interactions graphs using hub-induced subgraphs[C]// LNCS 4213: Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, Berlin, Sep 18-22, 2006. Berlin, Heidelberg: Springer, 2006: 371-382. |
[49] | METE M, TANG F, XU X, et al. A structural approach for finding functional modules from large biological networks[J]. BMC Bioinformatics, 2008, 9(9):S19. |
[50] |
ZHANG W, ZOU X. A new method for detecting protein complexes based on the three node cliques[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(4):879-886.
DOI URL |
[51] | REN J, WANG J, LI M, et al. Identifying protein complexes based on density and modularity in protein-protein interaction network[J]. BMC Systems Biology, 2013, 7(4):S12. |
[52] |
NAVLAKHA S, SCHATZ M C, KINGSFORD C. Revealing biological modules via graph summarization[J]. Journal of Computational Biology, 2009, 16(2):253-264.
DOI URL |
[53] |
GEVA G, SHARAN R. Identification of protein complexes from co-immunoprecipitation data[J]. Bioinformatics, 2010, 27(1):111-117.
DOI URL |
[54] |
JIA S, GAO L, GAO Y, et al. Defining and identifying cograph communities in complex networks[J]. New Journal of Physics, 2015, 17(1):013044.
DOI URL |
[55] | HU L, YUAN X, XIONG S. Identifying overlapping protein complexes in yeast protein interaction network via fuzzy clustering[C]// Proceedings of the 2017 IEEE International Conference on Fuzzy Systems, Naples, Jul 9-12, 2017. Piscataway: IEEE, 2017: 1-6. |
[56] | RAHMAN M S, NGOM A. A fast agglomerative community detection method for protein complex discovery in protein interaction networks[C]// LNCS 7986: Proceedings of the 8th IAPR International Conference on Pattern Recognition in Bioinformatics, Nice, Jun 17-20, 2013. Berlin, Heidelberg: Springer, 2013: 1-12. |
[57] | CHIN E, ZHU J. B3Clustering: identifying protein complexes from protein-protein interaction network[C]// LNCS 7808: Proceedings of the 15th Asia-Pacific Web Conference on Web Technologies and Applications, Sydney, Apr 4-6, 2013. Berlin, Heidelberg: Springer, 2013: 108-119. |
[58] |
ALTAF-UL-AMIN M, SHINBO Y, MIHARA K, et al. Development and implementation of an algorithm for prediction of protein complexes in large interaction networks[J]. BMC Bioinformatics, 2006, 7(1):207.
DOI URL |
[59] |
LI M, CHEN J, WANG J, et al. Modifying the DPClus algorithm for identifying protein complexes based on new topological structures[J]. BMC Bioinformatics, 2008, 9(1):398.
DOI URL |
[60] |
LIU G, WONG L, CHUA H N. Complex discovery from weighted PPI networks[J]. Bioinformatics, 2009, 25(15):1891-1897.
DOI URL |
[61] | SHEN X, ZHAO Y, LI Y, et al. An efficient protein complex mining algorithm based on multistage kernel extension[J]. BMC Bioinformatics, 2014, 15(12):S7. |
[62] |
NI W, XIONG H, ZHAO B, et al. Predicting overlapping protein complexes in weighted interactome networks[J]. Journal of Zhejiang University: Science C, 2013, 14(10):756-765.
DOI URL |
[63] |
HANNA E M, ZAKI N. Detecting protein complexes in protein interaction networks using a ranking algorithm with a refined merging procedure[J]. BMC Bioinformatics, 2014, 15(1):204.
DOI URL |
[64] |
JIANG P, SINGH M. SPICi: a fast clustering algorithm for large biological networks[J]. Bioinformatics, 2010, 26(8):1105-1111.
DOI URL |
[65] |
BANDYOPADHYAY S, RAY S, MUKHOPADHYAY A, et al. A multiobjective approach for identifying protein complexes and studying their association in multiple disorders[J]. Algorithms for Molecular Biology, 2015, 10(1):24.
DOI URL |
[66] |
THEOFILATOS K, PAVLOPOULOU N, PAPASAVVAS C, et al. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: evolutionary enhanced Markov clustering[J]. Artificial Intelligence in Medicine, 2015, 63(3):181-189.
DOI URL |
[67] |
RAMADAN E, NAEF A, AHMED M. Protein complexes predictions within protein interaction networks using genetic algorithms[J]. BMC Bioinformatics, 2016, 17(7):269.
DOI URL |
[68] |
CAO B, LUO J, LIANG C, et al. MOEPGA: a novel method to detect protein complexes in yeast protein-protein interaction networks based on multiobjective evolutionary programming genetic algorithm[J]. Computational Biology and Chemistry, 2015, 58:173-181.
DOI URL |
[69] |
ARNAU V, MARS S, MARÍN I. Iterative cluster analysis of protein interaction data[J]. Bioinformatics, 2004, 21(3):364-378.
DOI URL |
[70] | MA C Y, CHEN Y P P, BERGER B, et al. Identification of protein complexes by integrating multiple alignment of protein interaction networks[J]. Bioinformatics, 2017, 33(11):1681-1688. |
[71] | LI P, HU X, HE T, et al. Mining protein complexes based on connected affinity clique extension[C]// Proceedings of the 2013 IEEE International Conference on Bioinformatics and Biomedicine, Shanghai, Dec 18-21, 2013. Washington: IEEE Computer Society, 2013: 53-56. |
[72] |
CHUA H N, NING K, SUNG W K, et al. Using indirect protein-protein interactions for protein complex prediction[J]. Journal of Bioinformatics and Computational Biology, 2008, 6(3):435-466.
DOI URL |
[73] |
FRIEDEL C C, KRUMSIEK J, ZIMMER R. Bootstrapping the interactome: unsupervised identification of protein complexes in yeast[J]. Journal of Computational Biology, 2009, 16(8):971-987.
DOI URL |
[74] |
WU Z, LIAO Q, LIU B. idenPC-MIIP: identify protein complexes from weighted PPI networks using mutual important interacting partner relation[J]. Briefings in Bioinformatics, 2021, 22(2):1972-1983.
DOI URL |
[75] |
YAO H, GUAN J, LIU T. Denoising protein-protein interaction network via variational graph auto-encoder for protein complex detection[J]. Journal of Bioinformatics and Computational Biology, 2020, 18(3):2040010.
DOI URL |
[76] |
KOMUROV K, WHITE M. Revealing static and dynamic modular architecture of the eukaryotic protein interaction network[J]. Molecular Systems Biology, 2007, 3(1):110.
DOI URL |
[77] |
FENG J, JIANG R, JIANG T. A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2011, 8(3):621-634.
DOI URL |
[78] |
MARAZIOTIS I A, DIMITRAKOPOULOU K, BEZERIANOS A. Growing functional modules from a seed protein via integration of protein interaction and gene expression data[J]. BMC Bioinformatics, 2007, 8(1):408.
DOI URL |
[79] |
CHEN W, LI M, WU X, et al. Identifying protein complexes based on the integration of PPI network and gene expression data[J]. International Journal of Bioinformatics Research and Applications, 2015, 11(1):30-44.
DOI URL |
[80] |
KERETSU S, SARMAH R. Weighted edge based clustering to identify protein complexes in protein-protein interaction networks incorporating gene expression profile[J]. Computational Biology and Chemistry, 2016, 65:69-79.
DOI URL |
[81] |
ULITSKY I, SHAMIR R. Identification of functional modules using network topology and high-throughput data[J]. BMC Systems Biology, 2007, 1(1):8.
DOI URL |
[82] |
OU-YANG L, DAI D Q, ZHANG X F. Detecting protein complexes from signed protein-protein interaction networks[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(6):1333-1344.
DOI URL |
[83] |
WANG R, WANG C, SUN L, et al. A seed-extended algorithm for detecting protein complexes based on density and modularity with topological structure and GO annotations[J]. BMC Genomics, 2019, 20(1):637.
DOI URL |
[84] |
HU L, CHAN K C C. A density-based clustering approach for identifying overlapping protein complexes with functional preferences[J]. BMC Bioinformatics, 2015, 16(1):174.
DOI URL |
[85] |
CAI B, WANG H, ZHENG H, et al. Identification of protein complexes from tandem affinity purification/mass spectrometry data via biased random walk[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(2):455-466.
DOI URL |
[86] | ZHANG Y, LIN H, YANG Z, et al. Integrating experimental and literature protein-protein interaction data for protein complex prediction[J]. BMC Genomics, 2015, 16(2):S4. |
[87] |
RIZZETTO S, PRIAMI C, CSIKÁSZ-NAGY A. Qualitative and quantitative protein complex prediction through proteome-wide simulations[J]. PLoS Computational Biology, 2015, 11(10):e1004424.
DOI URL |
[88] |
KING A D, PRŽULJ N, JURISICA I. Protein complex prediction via cost-based clustering[J]. Bioinformatics, 2004, 20(17):3013-3020.
DOI URL |
[89] |
LUBOVAC Z, GAMALIELSSON J, OLSSON B. Combining functional and topological properties to identify core modules in protein interaction networks[J]. Proteins: Structure, Function, and Bioinformatics, 2006, 64(4):948-959.
DOI URL |
[90] |
CHO Y R, HWANG W, RAMANATHAN M, et al. Semantic integration to identify overlapping functional modules in protein interaction networks[J]. BMC Bioinformatics, 2007, 8(1):265.
DOI URL |
[91] |
KIM P M, LU L J, XIA Y, et al. Relating three-dimensional structures to protein networks provides evolutionary insights[J]. Science, 2006, 314(5807):1938-1941.
DOI URL |
[92] |
OU-YANG L, YAN H, ZHANG X F. A multi-network clustering method for detecting protein complexes from multiple heterogeneous networks[J]. BMC Bioinformatics, 2017, 18(13):463.
DOI URL |
[93] | JUNG S H, JANG W H, HUR H Y, et al. Protein complex prediction based on mutually exclusive interactions in protein interaction network[J]. Genome Informatics, 2008, 21(1):77-88. |
[94] |
WILL T, HELMS V. Identifying transcription factor complexes and their roles[J]. Bioinformatics, 2014, 30(17):i415-i421.
DOI URL |
[95] | MARUYAMA O, WONG L. Regularizing predicted complexes by mutually exclusive protein-protein interactions[C]// Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, Aug 25-28, 2015. New York: ACM, 2015: 1068-1075. |
[96] |
GAVIN A C, ALOY P, GRANDI P, et al. Proteome survey reveals modularity of the yeast cell machinery[J]. Nature, 2006, 440(7084):631-636.
DOI URL |
[97] |
LEUNG H C M, XIANG Q, YIU S M, et al. Predicting protein complexes from PPI data: a core-attachment approach[J]. Journal of Computational Biology, 2009, 16(2):133-144.
DOI URL |
[98] |
WU M, LI X, KWOH C K, et al. A core-attachment based method to detect protein complexes in PPI networks[J]. BMC Bioinformatics, 2009, 10(1):169.
DOI URL |
[99] | KOUHSAR M, ZARE-MIRAKABAD F, JAMALI Y. WCOACH: protein complex prediction in weighted PPI networks[J]. Genes & Genetic Systems, 2015, 90(5):317-324. |
[100] |
PENG W, WANG J, ZHAO B, et al. Identification of protein complexes using weighted PageRank-Nibble algorithm and core-attachment structure[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2015, 12(1):179-192.
DOI URL |
[101] | LUO J, LIN D, CAO B. A cell-core-attachment approach for identifying protein complexes in yeast protein-protein interaction network[J]. Journal of Intelligent & Fuzzy Systems, 2016, 31(2):967-978. |
[102] |
MEHRANFAR A, GHADIRI N, KOUHSAR M, et al. A Type-2 fuzzy data fusion approach for building reliable weighted protein interaction networks with application in protein complex prediction[J]. Computers in Biology and Medicine, 2017, 88:18-31.
DOI URL |
[103] |
HANNA E M, ZAKI N, AMIN A. Detecting protein complexes in protein interaction networks modeled as gene expression biclusters[J]. PLoS One, 2015, 10(12):e0144163.
DOI URL |
[104] |
SHEN X, YI L, JIANG X, et al. Mining temporal protein complex based on the dynamic PIN weighted with connected affinity and gene co-expression[J]. PLoS One, 2016, 11(4):e0153967.
DOI URL |
[105] |
OU-YANG L, DAI D Q, LI X L, et al. Detecting temporal protein complexes from dynamic protein-protein interaction networks[J]. BMC Bioinformatics, 2014, 15(1):335.
DOI URL |
[106] |
MUCHA P J, RICHARDSON T, MACON K, et al. Community structure in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980):876-878.
DOI URL |
[107] | JIN R, MCCALLEN S, LIU C C, et al. Identifying dynamic network modules with temporal and spatial constraints[C]// Proceedings of the 2009 Pacific Symposium, Kohala Coast, Jan 5-9, 2009: 203-214. |
[108] | SHEN X J, LI Y, JIANG X P, et al. Detecting temporal protein complexes based on neighbor closeness and time course protein interaction networks[C]// Proceedings of the 2015 IEEE International Conference on Bioinformatics and Biomedicine, Washington, Nov 9-12, 2015. Washington: IEEE Computer Society, 2015: 109-112. |
[109] |
ZHANG Y, LIN H, YANG Z, et al. A method for predicting protein complex in dynamic PPI networks[J]. BMC Bioinformatics, 2016, 17(7):229.
DOI URL |
[110] |
LEI X, WANG F, WU F X, et al. Protein complex identification through Markov clustering with firefly algorithm on dynamic protein-protein interaction networks[J]. Information Sciences, 2016, 329:303-316.
DOI URL |
[111] |
LEI X, ZHANG Y, CHENG S, et al. Topology potential based seed-growth method to identify protein complexes on dynamic PPI data[J]. Information Sciences, 2018, 425:140-153.
DOI URL |
[112] |
SHI Y, YAO H, GUAN J, et al. CPredictor 4.0: effectively detecting protein complexes in weighted dynamic PPI networks[J]. International Journal of Data Mining and Bioinformatics, 2018, 20(4):303-319.
DOI URL |
[113] | FIANNACA A, LA ROSA M, URSO A, et al. A know-ledge-based decision support system in bioinformatics: an application to protein complex extraction[J]. BMC Bioinformatics, 2013, 14(S1):S5. |
[114] |
SHI L, LEI X, ZHANG A. Protein complex prediction with semi-supervised learning in protein interaction networks[J]. Proteome Science, 2011, 9(1):S5.
DOI URL |
[115] | YU F Y, YANG Z H, TANG N, et al. Predicting protein complex in protein interaction network—a supervised learning based method[J]. BMC Systems Biology, 2014, 8(3):S4. |
[116] | YU F Y, YANG Z H, HU X H, et al. Protein complex detection in PPI networks based on data integration and supervised learning method[J]. BMC Bioinformatics, 2015, 16(12):S3. |
[117] |
SIKARNDAR M, ANWAR W, ALMOGREN A, et al. IoMT-based association rule mining for the prediction of human protein complexes[J]. IEEE Access, 2020, 8:6226-6237.
DOI URL |
[118] |
XU Y, ZHOU J, ZHOU S, et al. CPredictor3.0: detecting protein complexes from PPI networks with expression data and functional annotations[J]. BMC Systems Biology, 2017, 11(7):45-56.
DOI URL |
[119] | WU Z, LIAO Q, FAN S, et al. idenPC-CAP: identify protein complexes from weighted RNA-protein heterogeneous interaction networks using co-assemble partner relation[J]. Briefings in Bioinformatics, 2021, 22(4):372. |
[120] |
SHARAN R, IDEKER T, KELLEY B, et al. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data[J]. Journal of Computational Biology, 2005, 12(6):835-846.
DOI URL |
[121] |
WU M, OUYANG L, LI X L. Protein complex detection via effective integration of base clustering solutions and co-complex affinity scores[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(3):733-739.
DOI URL |
[122] |
SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research, 2019, 47(D1):D607-D613.
DOI URL |
[123] |
XENARIOS I, SALWINSKI L, DUAN X J, et al. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions[J]. Nucleic Acids Research, 2002, 30(1):303-305.
DOI URL |
[124] |
OUGHTRED R, STARK C, BREITKREUTZ B J, et al. The BioGRID interaction database: 2019 update[J]. Nucleic Acids Research, 2019, 47(D1):D529-D541.
DOI URL |
[125] |
KERRIEN S, ARANDA B, BREUZA L, et al. The IntAct molecular interaction database in 2012[J]. Nucleic Acids Research, 2012, 40(D1):D841-D846.
DOI URL |
[126] |
KROGAN N J, CAGNEY G, YU H, et al. Global landscape of protein complexes in the yeast saccharomyces cerevisiae[J]. Nature, 2006, 440(7084):637-643.
DOI URL |
[127] |
COLLINS S R, KEMMEREN P, ZHAO X C, et al. Toward a comprehensive atlas of the physical interactome of saccharomyces cerevisiae[J]. Molecular & Cellular Proteomics, 2007, 6(3):439-450.
DOI URL |
[128] |
MEWES H W, FRISHMAN D, MAYER K F X, et al. MIPS: analysis and annotation of proteins from whole genomes in 2005[J]. Nucleic Acids Research, 2006, 34:D169-D172.
DOI URL |
[129] |
PU S, WONG J, TURNER B, et al. Up-to-date catalogues of yeast protein complexes[J]. Nucleic Acids Research, 2009, 37(3):825-831.
DOI URL |
[130] |
OZAWA Y, SAITO R, FUJIMORI S, et al. Protein complex prediction via verifying and reconstructing the topology of domain-domain interactions[J]. BMC Bioinformatics, 2010, 11(1):350.
DOI URL |
[131] |
JUNG S H, HYUN B, JANG W H, et al. Protein complex prediction based on simultaneous protein interaction network[J]. Bioinformatics, 2009, 26(3):385-391.
DOI URL |
[132] | LIU G, YONG C H, CHUA H N, et al. Decomposing PPI networks for complex discovery[C]// Proceedings of the 2010 IEEE International Conference on Bioinformatics and Biomedicine, Hong Kong, China, Dec 18-21, 2010. Washington: IEEE Computer Society, 2010: 280-283. |
[133] |
SRIHARI S, LEONG H W. Employing functional interactions for characterisation and detection of sparse complexes from yeast PPI networks[J]. International Journal of Bioinformatics Research and Applications, 2012, 8(3/4):286-304.
DOI URL |
[134] | GROVER A, LESKOVEC J . node2vec: scalable feature learning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864. |
[135] | WANG C, PAN S, LONG G, et al. MGAE: marginalized graph autoencoder for graph clustering[C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 889-898. |
[1] | ZHENG Wenping, LI Jinyu, WANG Jie. Protein Complex Recognition Algorithm Based on Genetic Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(5): 794-803. |
[2] | ZHOU Chao+, SUN Hailong, HU Chunming, GE Zaixing. Grid Workflow Development and Execution Environment for Bioinformatics Applications [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(3): 275-282. |
[3] | ZHU Yangyong1,2+, XIONG Yun1. BioSeg: a biological sequence data model [J]. Journal of Frontiers of Computer Science and Technology, 2008, 2(1): 77-96. |
[4] | WANG Fei,TANG Yin,XI Yan-ping,LU Ru-qian. Mathematic methods of biological process [J]. Journal of Frontiers of Computer Science and Technology, 2007, 1(第1期): 17-38. |
[5] |
WANG Fei,TANG Yin,XI Yan-ping,LU Ru-qian .Mathematic methods of biological process [J]. Journal of Frontiers of Computer Science and Technology, 2007, 1(1): 17-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/