[1] CHAUDHARI S, MITHAL V, POLATKAN G, et al. An at-tentive survey of attention models[J]. ACM Transactions on Intelligent Systems and Technology, 2021, 12(5): 1-32.
[2] FUKUI H, HIRAKAWA T, YAMASHITA T, et al. Attention branch network: learning of attention mechanism for visual explanation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach,Jun 16-20, 2019. Piscataway: IEEE, 2019: 10705-10714.
[3] 刘颖, 雷研博, 范九伦, 等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2021, 47(2): 297-315.
LIU Y, LEI Y B, FAN J L, et al. Survey on image classifi-cation technology based on small sample learning[J]. Acta Automatica Sinica, 2021, 47(2): 297-315.
[4] 吴帅, 徐勇, 赵东宁. 基于深度卷积网络的目标检测综述[J]. 模式识别与人工智能, 2018, 31(4): 335-346.
WU S, XU Y, ZHAO D N. Survey of object detection based on deep convolutional network[J]. Pattern Recognition and Artificial Intelligence, 2018, 31(4): 335-346.
[5] 景庄伟, 管海燕, 彭代峰, 等. 基于深度神经网络的图像语义分割研究综述[J]. 计算机工程, 2020, 46(10): 1-17.
JING Z W, GUAN H Y, PENG D F, et al. Survey of research in image semantic segmentation based on deep neural net-work[J]. Computer Engineering, 2020, 46(10): 1-17.
[6] ZHANG Y, LI K, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 294-310.
[7] CHU Q, OUYANG W, LI H, et al. Online multi-object trac-king using CNN-based single object tracker with spatial-temporal attention mechanism[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4846-4855.
[8] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vi-sion and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 7132-7141.
[9] HU J, SHEN L, ALBANIE S, et al. Gather-excite: exploiting feature context in convolutional neural networks[J]. arXiv:1810.12348, 2018.
[10] PARK J, WOO S, LEE J Y, et al. BAM: bottleneck attention module[J]. arXiv:1807.06514, 2018.
[11] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[12] FU J, LIU J, TIAN H, et al. Dual attention network for scene segmentation[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3146-3154.
[13] LI X, HU X, YANG J. Spatial group-wise enhance: improving semantic feature learning in convolutional networks[J]. arXiv:1905.09646, 2019.
[14] ZHANG Q L, YANG Y B. SA-NET: shuffle attention for deep convolutional neural networks[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing, Toronto, Jun 6-11, 2021. Piscataway: IEEE, 2021: 2235-2239.
[15] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Com-puter Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 11531-11539.
[16] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 13713-13722.
[17] MA X, GUO J, TANG S, et al. DCANet: learning connected attentions for convolutional neural networks[J]. arXiv:2007.05099, 2020.
[18] LI X, WANG W H, HU X L, et al. Selective kernel networks[C]//Proceedings of the 2019 IEEE Conference on Com-puter Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 510-519.
[19] SAGAR A. DMSANet: dual multi scale attention network[J]. arXiv:2106.08382, 2021.
[20] CHEN Y, KALANTIDIS Y, LI J, et al. A2-Nets: double at-tention networks[J]. arXiv:1810.11579, 2018.
[21] WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer So-ciety, 2017: 6450-6458.
[22] ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]//Pro-ceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6688-6697.
[23] CAI Q, PAN Y W, YAO T, et al. Memory matching networks for one-shot image recognition[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recog-nition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 4080-4088.
[24] EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136.
[25] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778.
[26] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 1577-1586.
[27] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[28] HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF Inter-national Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1314-1324. |