Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (6): 1214-1242.DOI: 10.3778/j.issn.1673-9418.2112077
• Surveys and Frontiers • Previous Articles Next Articles
WANG Qun1,2, LI Fujuan1,+(), NI Xueli1,2, XIA Lingling1, WANG Zhenli1, LIANG Guangjun1,2
Received:
2021-12-20
Revised:
2022-02-14
Online:
2022-06-01
Published:
2022-06-20
About author:
WANG Qun, born in 1971, Ph.D., professor, member of CCF. His research interests include information security, computer network architecture and protocols.Supported by:
王群1,2, 李馥娟1,+(), 倪雪莉1,2, 夏玲玲1, 王振力1, 梁广俊1,2
通讯作者:
+ E-mail: lfj@jspi.edu.cn作者简介:
王群(1971—),男,甘肃天水人,博士,教授,CCF会员,主要研究方向为信息安全、计算机网络体系结构与协议。基金资助:
CLC Number:
WANG Qun, LI Fujuan, NI Xueli, XIA Lingling, WANG Zhenli, LIANG Guangjun. Survey on Blockchain Consensus Algorithms and Application[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1214-1242.
王群, 李馥娟, 倪雪莉, 夏玲玲, 王振力, 梁广俊. 区块链共识算法及应用研究[J]. 计算机科学与探索, 2022, 16(6): 1214-1242.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2112077
名称 | 年份 | 拜占庭 容错 | 节点是 否可靠 | 链路是 否可靠 | 通信 模型 |
---|---|---|---|---|---|
两军问题[ | 1975 | 否 | 是 | 否 | 不限 |
拜占庭将军问题[ | 1982 | 是(<1/3) | 否 | 是 | 部分同步 |
FLP[ | 1985 | 否 | 允许1个失败 | 是 | 异步 |
CAP[ | 2019 | 是(≥1/3) | 是 | 否 | 异步 |
Paxos[ | 1998 | 否 | 是 | 是 | 部分同步 |
Table 1 Classical consensus algorithm
名称 | 年份 | 拜占庭 容错 | 节点是 否可靠 | 链路是 否可靠 | 通信 模型 |
---|---|---|---|---|---|
两军问题[ | 1975 | 否 | 是 | 否 | 不限 |
拜占庭将军问题[ | 1982 | 是(<1/3) | 否 | 是 | 部分同步 |
FLP[ | 1985 | 否 | 允许1个失败 | 是 | 异步 |
CAP[ | 2019 | 是(≥1/3) | 是 | 否 | 异步 |
Paxos[ | 1998 | 否 | 是 | 是 | 部分同步 |
名称 | 年份 | 能耗 | 出块速度 | 分叉 | 算力分布 |
---|---|---|---|---|---|
PoW[ | 1999 | 高 | 10 min | 有 | 集中 |
Ethash[ | 2014 | 较高 | 15 s | 易 | 分散 |
Bitcoin-NG[ | 2015 | 较低 | 主块10 min、微块10 s | 易 | 较集中 |
ByzCoin[ | 2016 | 较低 | 区块1 MB时约1/100 s | 易 | 较集中 |
ByzCoinX[ | 2018 | 较低 | — | 无 | 较集中 |
FruitChains[ | 2017 | 低 | — | — | 分散 |
Conflux[ | 2018 | 低 | <1/6 000 s | 无 | 分散 |
Table 2 PoW and its improved algorithms
名称 | 年份 | 能耗 | 出块速度 | 分叉 | 算力分布 |
---|---|---|---|---|---|
PoW[ | 1999 | 高 | 10 min | 有 | 集中 |
Ethash[ | 2014 | 较高 | 15 s | 易 | 分散 |
Bitcoin-NG[ | 2015 | 较低 | 主块10 min、微块10 s | 易 | 较集中 |
ByzCoin[ | 2016 | 较低 | 区块1 MB时约1/100 s | 易 | 较集中 |
ByzCoinX[ | 2018 | 较低 | — | 无 | 较集中 |
FruitChains[ | 2017 | 低 | — | — | 分散 |
Conflux[ | 2018 | 低 | <1/6 000 s | 无 | 分散 |
名称 | 年份 | 安全性 | 出块速度 | 分叉 | 去中心化 |
---|---|---|---|---|---|
DPoS[ | 2014 | 较弱 | 0.5 s(EOS) | 短期分叉 | 部分中心化 |
Ouroboros[ | 2017 | 较强 | 20 s(ADA) | 无 | 中心化 |
Ouroboros Praos[ | 2018 | 强 | <20 s | 无 | 中心化 |
Ouroboros Genesis[ | 2018 | 更强 | <20 s | 无 | 中心化 |
Snow White[ | 2016 | 强 | <20 s | 分叉 | 去中心化 |
Table 3 Preformance comparison of typical PoS consensus algorithms
名称 | 年份 | 安全性 | 出块速度 | 分叉 | 去中心化 |
---|---|---|---|---|---|
DPoS[ | 2014 | 较弱 | 0.5 s(EOS) | 短期分叉 | 部分中心化 |
Ouroboros[ | 2017 | 较强 | 20 s(ADA) | 无 | 中心化 |
Ouroboros Praos[ | 2018 | 强 | <20 s | 无 | 中心化 |
Ouroboros Genesis[ | 2018 | 更强 | <20 s | 无 | 中心化 |
Snow White[ | 2016 | 强 | <20 s | 分叉 | 去中心化 |
字段名 | 描述 |
---|---|
s | 已经被确认的检查点(checkpoint)区块 |
t | 目标确认检查点区块 |
h(s) | 已确认检查点的高度 |
h(t) | 目标确认检查点的高度 |
Table 4 Four pieces of information that makes up voting message
字段名 | 描述 |
---|---|
s | 已经被确认的检查点(checkpoint)区块 |
t | 目标确认检查点区块 |
h(s) | 已确认检查点的高度 |
h(t) | 目标确认检查点的高度 |
名称 | 年份 | 主要解决问题 | 典型应用 |
---|---|---|---|
PoSV[ | 2014 | 屯积币龄 | Reddcoin |
PoA[ | 2014 | 持币者不积极参与挖矿 | Decred |
Casper FFG[ | 2017 | 无利害关系攻击、长程攻击 | Ethereum2.0 |
2-hop[ | 2020 | 51%算力(PoW)或权益(PoS)攻击 | — |
PoB[ | 2020 | 屯积代币 | Slimcoin |
Table 5 Performance comparison of typical PoW+PoS consensus algorithms
名称 | 年份 | 主要解决问题 | 典型应用 |
---|---|---|---|
PoSV[ | 2014 | 屯积币龄 | Reddcoin |
PoA[ | 2014 | 持币者不积极参与挖矿 | Decred |
Casper FFG[ | 2017 | 无利害关系攻击、长程攻击 | Ethereum2.0 |
2-hop[ | 2020 | 51%算力(PoW)或权益(PoS)攻击 | — |
PoB[ | 2020 | 屯积代币 | Slimcoin |
算法名称 | 年份 | 核心算法 | 分片类型 | 通信模型 | 应用场景 |
---|---|---|---|---|---|
Solida[ | 2016 | PoW+BFT | 单一分片 | 异步 | 公有链 |
Hybrid consensus[ | 2017 | PoW+BFT | 单一分片 | 异步 | 公有链 |
Chainspace[ | 2017 | PoW+BFT | 多分片 | 异步 | 联盟链 |
RapidChain[ | 2018 | PoW+BFT | 多分片 | 部分同步 | 公有链 |
PeerCensus[ | 2014 | PoW+PBFT | 单一分片 | 部分同步 | 公有链 |
ByzCoin[ | 2016 | PoW+PBFT | 单一分片 | 部分同步 | 公有链 |
OmniLedger[ | 2018 | PoW+PBFT | 多分片 | 同步 | 联盟链/ 公有链 |
ELASTICO[ | 2016 | PoW+PBFT | 多分片 | 同步 | 联盟链/ 公有链 |
Monoxide[ | 2019 | PoW+PBFT | 多分片 | 同步 | 联盟链/ 公有链 |
Algorand[ | 2017 | PoS+BFT | 单一分片 | 部分同步 | 公有链 |
dBFT[ | 2020 | PoS+BFT | 单一分片 | 异步 | 公有链 |
Table 6 Performance comparison of typical PoW/PoS+BFT/PBFT consensus algorithms
算法名称 | 年份 | 核心算法 | 分片类型 | 通信模型 | 应用场景 |
---|---|---|---|---|---|
Solida[ | 2016 | PoW+BFT | 单一分片 | 异步 | 公有链 |
Hybrid consensus[ | 2017 | PoW+BFT | 单一分片 | 异步 | 公有链 |
Chainspace[ | 2017 | PoW+BFT | 多分片 | 异步 | 联盟链 |
RapidChain[ | 2018 | PoW+BFT | 多分片 | 部分同步 | 公有链 |
PeerCensus[ | 2014 | PoW+PBFT | 单一分片 | 部分同步 | 公有链 |
ByzCoin[ | 2016 | PoW+PBFT | 单一分片 | 部分同步 | 公有链 |
OmniLedger[ | 2018 | PoW+PBFT | 多分片 | 同步 | 联盟链/ 公有链 |
ELASTICO[ | 2016 | PoW+PBFT | 多分片 | 同步 | 联盟链/ 公有链 |
Monoxide[ | 2019 | PoW+PBFT | 多分片 | 同步 | 联盟链/ 公有链 |
Algorand[ | 2017 | PoS+BFT | 单一分片 | 部分同步 | 公有链 |
dBFT[ | 2020 | PoS+BFT | 单一分片 | 异步 | 公有链 |
[1] | 王群, 李馥娟, 王振力, 等. 区块链原理及关键技术[J]. 计算机科学与探索, 2020, 14(10): 1621-1643. |
WANG Q, LI F J, WANG Z L, et al. Principle and core technology of blockchain[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1621-1643. | |
[2] | MIRAZ M H. Blockchain: technology fundamentals of the trust machine[EB/OL]. (2017-12-23)[2021-07-12]. https://www.legalanalytics.law.cuhk.edu.hk/post/2017/12/23/blockchain-technology-fundamentals-of-the-trust-machine . |
[3] | FANTI G, VISWANATH P. Anonymity properties of the bitcoin P2P network[J]. arXiv:1703.08761, 2017. |
[4] | NAKAMOTO S. Bitcoin: a peer-to-peer electronic cash system[EB/OL]. (2018-06-10)[2021-07-13]. https://bitcoin.org/ bitcoin.pdf |
[5] | 袁勇, 倪晓春, 曾帅, 等. 区块链共识算法的发展现状与展望[J]. 自动化学报, 2018, 44(11): 2011-2022. |
YUAN Y, NI X C, ZENG S, et al. Blockchain consensus algorithms: the state of the art and future trends[J]. Acta Automatica Sinica, 2018, 44(11): 2011-2022. | |
[6] | 刘懿中, 刘建伟, 张宗洋, 等. 区块链共识机制研究综述[J]. 密码学报, 2019, 6(4): 395-432. |
LIU Y Z, LIU J W, ZHANG Z Y, et al. Overview on blockchain consensus mechanisms[J]. Journal of Cryptologic Research, 2019, 6(4): 395-432. | |
[7] | 夏清, 窦文生, 郭凯文, 等. 区块链共识协议综述[J]. 软件学报, 2021, 32(2): 277-299. |
XIA Q, DOU W S, GUO K W, et al. Survey on blockchain consensus protocol[J]. Journal of Software, 2021, 32(2): 277-299. | |
[8] | 靳世雄, 张潇丹, 葛敬国, 等. 区块链共识算法研究综述[J]. 信息安全学报, 2021, 6(2): 85-100. |
JIN S X, ZHANG X D, GE J G, et al. Overview of blockchain consensus algorithm[J]. Journal of Cyber Security, 2021, 6(2): 85-100. | |
[9] | NGUYEN G T, KIM K. A survey about consensus algorithms used in blockchain[J]. Journal of Information Processing Systems, 2018, 14(1): 101-128. |
[10] | YIU N. An overview of forks and coordination in blockchain development[J]. arXiv: 2102.10006, 2021. |
[11] |
LASHKARI B, MUSILEK P. A comprehensive review of blockchain consensus mechanisms[J]. IEEE Access, 2021, 9(3): 43620-43652.
DOI URL |
[12] |
BOURAGA S. A taxonomy of blockchain consensus protocols: a survey and classification framework-ScienceDirect[J]. Expert Systems with Applications, 2021, 168: 114384.
DOI URL |
[13] | LAMPORT L. How to make a multiprocessor computer that correctly executes multiprocess programs[J]. IEEE Transactions on Computers, 1979, 28(9): 690-691. |
[14] | KRISHNA S, EMMI M, ENEA C, et al. Verifying visibility-based weak consistency[C]// LNCS 12075: Proceedings of the 29th European Symposium on Programming, Dublin, Apr 25-30, 2020. Cham: Springer, 2020: 280-307. |
[15] | MA Z F. Handbook of blockchain technology development[M]. Beijing: Tsinghua University Press, 2021. |
马兆丰. 区块链技术开发指南[M]. 北京: 清华大学出版社, 2021. | |
[16] | HERRERA-JOANCOMARTÍ J. Research and challenges on bitcoin anonymity[C]// LNCS 8872: Proceedings of the 9th International Workshop on Data Privacy Management, Autonomous Spontaneous Security, and Security Assurance, Wroclaw, Sep 10-11, 2014. Cham: Springer, 2015: 3-16. |
[17] | BADARI A, CHAUDHURY A. An overview of bitcoin and ethereum white-papers, forks, and prices[EB/OL]. (2021-05-11)[2021-08-10]. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3841827 . |
[18] | CACHIN C. Architecture of the hyperledger blockchain fabric[EB/OL]. (2016-01-01)[2021-08-16]. https://www.zurich. ibm.com/dccl/papers/cachin_dccl.pdf |
[19] | ABRAHAM I, MALKHI D, NAYAK K, et al. Solida: a blockchain protocol based on reconfigurable Byzantine consensus[C]// Proceedings of the 21st International Conference on Principles of Distributed Systems, Lisbon, Dec 18-20, 2017: 25. |
[20] |
MANEAS A, CHONDROS N, DIAMANTOPOULOS P, et al. On achieving interactive consistency in real-world distributed systems[J]. Journal of Parallel and Distributed Computing, 2021, 147: 220-235.
DOI URL |
[21] |
AKKOYUNLU E A, EKANADHAM K, HUBER R V. Some constraints and tradeoffs in the design of network communications[J]. ACM SIGOPS Operating Systems Review, 1975, 9(5): 67-74.
DOI URL |
[22] |
LAMPORT L, SHOSTAK R, PEASE M. The Byzantine generals problem[J]. ACM Transactions on Programming Languages and Systems, 1982, 4(3): 382-401.
DOI URL |
[23] | COWLING J, MYERS D S, LISKOV B, et al. HQ Replication: a hybrid quorum protocol for Byzantine fault tolerance[C]// Proceedings of the 7th Symposium on Operating Systems Design and Implementation, Seattle, Nov 6-8, 2003. New Orleans: USENIX Association, 2003: 177-190. |
[24] |
LAMPORT L. The part-time parliament[J]. ACM Transactions on Computer Systems, 1998, 16(2): 133-169.
DOI URL |
[25] | OKI B M, LISKOV B H. Viewstamped replication: a new primary copy method to support highly-available distributed systems[C]// Proceedings of the 7th Annual Conference on Principles of Distributed Computing, Toronto, Aug 15-17, 1988. New York: ACM, 1988: 8-17. |
[26] | FAZLALI M, EFTEKHAR S M, DEHSHIBI M M, et al. Raft consensus algorithm: an effective substitute for Paxos in high throughput P2P-based systems[J]. arXiv: 1911.01231, 2019. |
[27] | CASTRO M, LISKOV B. Practical Byzantine fault tolerance[C]// Proceedings of the 3rd USENIX Symposium on Operating Systems Design and Implementation, New Orleans, Feb 22-25, 1999. New Orleans: USENIX Association, 1999: 173-186. |
[28] |
THAI Q T, YIM J C, YOO T W, et al. Hierarchical Byzantine fault-tolerance protocol for permissioned blockchain systems[J]. The Journal of Supercomputing, 2019, 75(11): 7337-7365.
DOI URL |
[29] |
CASTRO M, LISKOV B. Practical Byzantine fault tolerance and proactive recovery[J]. ACM Transactions on Computer Systems, 2002, 20(4): 398-461.
DOI URL |
[30] | JEHL L. Quorum selection for Byzantine fault tolerance[C]// Proceedings of the 39th International Conference on Distributed Computing Systems, Dallas, Jul 7-10, 2019. Piscataway: IEEE, 2019: 2168-2177. |
[31] |
FISCHER M J, LYNCH N A, PATERSON M S. Impossibility of distributed consensus with one faulty process[J]. Journal of the ACM, 1985, 32(2): 374-382.
DOI URL |
[32] | WANG Y G. Blockchain BFT protocol for complete asynchronous networks[J]. arXiv: 2005.04309, 2020. |
[33] |
MUÑOZ-ESCOÍ F D, DE JUAN-MARÍN R, GARCÍA-ESCRIVÁ J R, et al. CAP theorem: revision of its related consistency models[J]. The Computer Journal, 2019, 62(6): 943-960.
DOI URL |
[34] | KLEPPMANN M. A critique of the CAP theorem[J]. arXiv:1509.05393, 2015. |
[35] | En-Tan-Mo. En-Tan-Mo science[EB/OL]. (2019-11-27) [2021-08-10]. http://www.entanmo.com/docs/ETM%20Science_en-GB.pdf |
[36] | HAN R, FOUTRIS N, KOTSELIDIS C. Demystifying crypto-mining: analysis and optimizations of memory-hard POW algorithms[C]// Proceedings of the 2019 IEEE International Symposium on Performance Analysis of Systems and Software, Madison, Mar 24-26, 2019. Piscataway: IEEE, 2019: 22-33. |
[37] |
JIANG X J, LIU X F. CryptoKitties transaction network analysis: the rise and fall of the first blockchain game mania[J]. Frontiers in Physics, 2021, 9: 631665.
DOI URL |
[38] | GARCÍA-PÉREZ Á, GOTSMAN A, MESHMAN Y, et al. Paxos consensus, deconstructed and abstracted[C]// LNCS 10801: Proceedings of the 27th European Symposium on Programming, Thessaloniki, Apr 14-20, 2018. Cham: Springer, 2018: 912-939. |
[39] | LAMPORT L. Paxos made simple[J]. ACM SIGACT News, 2001, 32(4): 18-25. |
[40] |
LAMPORT L. Fastpaxos[J]. Distributed Computing, 2006, 19(2): 79-103.
DOI URL |
[41] | BURROWS M. The Chubby lock service for loosely-coupled distributed systems[C]// Proceedings of the 7th Symposium on Operating Systems Design and Implementation, Seattle, Nov 6-8, 2006. New Orleans: USENIX Association, 2006: 335-350. |
[42] | KRZYZANOWSKI P. Google chubby[EB/OL]. (2021-03-01)[2021-07-12]. https://people.cs.rutgers.edu/-pxk/417/notes/chubby.html . |
[43] |
ISARD M. Autopilot: automatic data center management[J]. ACM SIGOPS Operating Systems Review, 2007, 41(2): 60-67.
DOI URL |
[44] |
ZHENG J J, LIN Q, XU J T, et al. Paxos store: high- availability storage made practical in wechat[J]. Proceedings of the VLDB Endowment, 2017, 10(12): 1730-1741.
DOI URL |
[45] |
HUANG D Y, MA X L, ZHANG S L. Performance analysis of the raft consensus algorithm for private blockchains[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 50(1): 172-181.
DOI URL |
[46] | HUNT P, KONAR M, JUNQEIRA F, et al. Zookeeper: wait-free coordination for internet-scale systems[C]// Proceedings of the 2010 USENIX Conference on USENIX Annual Technical Conference, Boston, Jun 23-25, 2010. New Orleans: USENIX Association, 2010: 11-25. |
[47] | etcd. A distributed, reliable key-value store for the most critical data of a distributed system[EB/OL]. (2021-06-15)[2021-07-15]. https://etcd.io/ . |
[48] | JAKOBSSON M, JUELS A. Proofs of work and bread pudding protocols[C]//Proceedings of the IFIP TC6/TC 11 Joint Working Conference on Secure Information Networks:Communications and Multimedia Security, Netherlands, Sep 20-21, 1999. Boston: Kluwer Academic Publishers, 1999: 258-272. |
[49] | BACK A. Hashcash—a denial of service counter-measure[EB/OL]. (2002-08-01)[2021-08-30]. http://www.hashcash.org/papers/hashcash.pdf |
[50] | WAHAB A, MEHMOOD W. Survey of consensus protocols[J]. arXiv: 1810.03357, 2018. |
[51] | CONTI M, KUMAR E S, LAL C, et al. A survey on security and privacy issues of bitcoin[J]. IEEE Communications Surveys & Tutorials, 2018, 20(4): 3416-3452. |
[52] | MUKHERJEE P, PRADHAN C. Blockchain 1.0 to Blockchain 4.0—the evolutionary transformation of blockchain technology[EB/OL]. (2021-05-01)[2021-09-01]. https://www. researchgate.net/publication/351263701_Blockchain_10_to_ Blockchain_40-The_Evolutionary_Transformation_of_Blockchain_Technology . |
[53] | CHERNET H F, JILLEDI S K. A next-generation smart contract and decentralized blockchain platform: a case study on ethiopia[J]. Journal of Business Analytics and Data Visualization, 2020, 1(1): 28-34. |
[54] | BRÜNJES L, GABBAY M J. UTxO- vs account-based smart contract blockchain programming paradigms[C]// LNCS 12478: Proceedings of the 9th International Symposium on Leveraging Applications of Formal Methods, Rhodes, Oct 20-30, 2020. Cham: Springer, 2020: 73-88. |
[55] | BENCIC F M, ZARKO I P. Distributed ledger technology: blockchain compared to directed acyclic graph[C]// Proceedings of the 38th IEEE International Conference on Distributed Computing Systems, Vienna, Jul 2-6, 2018. Washington: IEEE Computer Society, 2018: 1569-1570. |
[56] | Ethereum WiKi. ethash[EB/OL]. (2020-11-06)[2021-09-02]. https://eth.wiki/en/concepts/ethash/ethash . |
[57] | TRADING C. X11 mining calculator[EB/OL]. (2020-07-21)[2021-09-02]. https://www2.ict.ufvjm.edu.br/index.php/2020/ 07/21/x11-mining-calculator/ . |
[58] | PADMAVATHI M, SURESH R M. Secure P2P intelligent network transaction using litecoin[J]. Mobile Networks & Applications, 2019, 24(2): 318-326. |
[59] | DASH. What is dash?[EB/OL]. (2021-06-03)[2021-09-01]. https://dashplatform.readme.io/docs/introduction-what-is-dash . |
[60] | SOMPOLINSKY Y, ZOHAR A. Secure high-rate transaction processing in bitcoin[C]// LNCS 8975: Proceedings of the 2015 International Conference on Financial Cryptography and Data Security, San Juan, Jan 26-30, 2015. Cham: Springer, 2015: 507-527. |
[61] | EYAL I, GENCER A E, SIRER E G, et al. Bitcoin-NG: a scalable blockchain protocol[J]. arXiv:1510.02037, 2015. |
[62] | EYAL I, SIRER E G. Majority is not enough: bitcoin mining is vulnerable[J]. Communication of the ACM, 2018, 61(7): 95-102. |
[63] | KOKORIS-KOGIAS E, JOVANOVIC P, GAILLY N, et al. Enhancing bitcoin security and performance with strong consistency via collective signing[C]// Proceedings of the 25th USENIX Security Symposium, Austin, Aug 10-12, 2016. New Orleans: USENIX Association, 2016: 279-296. |
[64] | LUU L, NARAYANAN V, ZHENG C D, et al. A secure sharding protocol for open blockchains[C]// Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Oct 24-28, 2016. New York: ACM, 2016: 17-30. |
[65] | KOKORIS-KOGIAS E, JOVANOVIC P, GASSER L, et al. OmniLedger:a secure, scale-out, decentralized ledger via sharding[C]// Proceedings of the 2018 IEEE Symposium on Security and Privacy, San Fransisco, May 20-23, 2018. Washington: IEEE Computer Society, 2018: 583-598. |
[66] | PASS R, SHI E. FruitChains: a fair blockchain[C]// Procee-dings of the 2017 ACM Symposium on Principles of Distributed Computing, Washington, Jul 25-27, 2017. New York: ACM, 2017: 315-324. |
[67] | LI C X, LI P L, ZHOU D, et al. Scaling nakamoto consensus to thousands of transactions per second[J]. arXiv:1805. 03870v4, 2018. |
[68] | LASLA N, ALSAHAN L, ABDALLAH M, et al. Green-PoW: an energy-efficient blockchain proof-of-work consensus algorithm[J]. arXiv: 2007.04086, 2020. |
[69] |
KARA M, LAOUID A, ALSHAIKH M, et al. A compute and wait in PoW (CW-PoW) consensus algorithm for preserving energy consumption[J]. Applied Sciences, 2021, 11(15): 6750.
DOI URL |
[70] |
QU X D, WANG S L, HU Q, et al. Proof of federated learning: a novel energy-recycling consensus algorithm[J]. IEEE Transactions on Parallel and Distributed Systems, 2021, 32(8): 2074-8085.
DOI URL |
[71] | MECHANIC Q. Proof of stake[EB/OL]. (2011-07-11)[2021-09-13]. https://bitcointalk.org/index.php?topic=27787 . |
[72] | KING S, NADAL S. PPCoin: peer-to-peer crypto-currency with proof-of-stake[EB/OL]. (2012-08-19)[2021-09-05]. https://www.peercoin.net/assets/paper/peercoin-paper.pdf |
[73] | Nxt community. Nxt whitepaper[EB/OL]. (2014-07-12) [2021-09-30]. https://www.jelurida.com/sites/default/files/NxtWhitepaper.pdf |
[74] | VASIN P. BlackCoin’s proof-of-stake protocol v2[EB/OL]. [2021-09-30]. https://blackcoin.org/blackcoin-pos-protocol-v2-whitepaper.pdf |
[75] | SCHUH F, LARIMER D, CRYPTONOMEX, et al. BitShare 2.0: financial smart contract platform[EB/OL]. (2015-11-01)[2021-10-02]. http://docs.bitshares.eu/_downloads/ bitshares-financial-platform.pdf |
[76] | Bitshares. What is bitShares?[EB/OL]. (2019-01-01) [2021-10-02]. https://how.bitshares.works/en/master/technology/what_bitshares.html . |
[77] | Steem. Steem: an incentivized, blockchain-based, public content platform[EB/OL]. (2019-06-01)[2021-10-02]. https://www.steem.com/steem-whitepaper.pdf |
[78] | EOSIO. What is EOS?[EB/OL]. [2021-10-02]. https://eos.io/eos-public-blockchain/ . |
[79] | KIAYIAS A, RUSSELL A, DAVID B, et al. Ouroboros: a provably secure proof-of-stake blockchain protocol[C]// LNCS 10401: Proceedings of the 37th Annual International Cryptology Conference Advances in Cryptology, Santa Barbara, Aug 20-24, 2017. Cham: Springer, 2017: 357-388. |
[80] | GAŽI P, KIAYIAS A, ZINDROS D. Proof-of-stake sidechains[C]// Proceedings of the 2019 IEEE Symposium on Security and Privacy, San Francisco, May 19-23, 2019. Piscataway: IEEE, 2019: 139-156. |
[81] |
HALEVI S, HAZAY C, POLYCHRONIADOU A, et al. Round-optimal secure multi-party computation[J]. Journal of Cryptology, 2021, 34(3): 1-63.
DOI URL |
[82] | JZNBAZ S, ASGHARI R, BAGHERPOUR B, et al. A fast non-interactive publicly verifiable secret sharing scheme[C]// Proceedings of the 17th International ISC Conference on Information Security and Cryptology, Tehran, Sep 9-10, 2020. Piscataway: IEEE, 2020: 7-13. |
[83] | ROTHBLUM R D, SEALFON A, SOTIRAKI K. Toward non-interactive zero-knowledge proofs for NP from LWE[J]. Journal of Cryptology, 2021, 34(1): 472-503. |
[84] | DAVID B, GAŽI P, KIAYIAS A, et al. Ouroboros Praos:an adaptively-secure, semi-synchronous proof-of-stake blockchain[C]// LNCS 10821: Proceedings of the 37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv, Apr 29-May 3, 2018. Cham: Springer, 2018: 66-98. |
[85] | GANESH C, ORLANDI C, TSCHUDI D. Proof-of-stake protocols for privacy-aware blockchains[C]// Proceedings of the 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Darmstadt, May 19-23, 2019. Cham: Springer, 2019: 690-719. |
[86] | BADERTSCHER C, GAŽI P, KIAYIAS A, et al. Ouroboros Genesis: composable proof-of-stake blockchains with dynamic availability[C]// Proceedings of the 2018 ACM SIGSAC Conference, Toronto, Oct 15-19, 2018. New York: ACM, 2018: 913-930. |
[87] | DEIRMENTZOGLOU E, PAPAKYRIAKOPOULOS G, PATSAKIS C. A survey on long-range attacks for proof of stake protocols[J]. IEEE Access, 2019(7): 28712-28725. |
[88] | DAIAN P, PASS R, SHI E. Snow White: robustly reconfigurable consensus and applications to provably secure proof of stake[C]// LNCS 11598: Proceedings of the 23rd International Conference on Financial Cryptography and Data Security, Frigate Bay, Feb 18-22, 2019. Cham: Springer, 2019: 23-41. |
[89] | REN L. Proof of stake velocity: building the social currency of the digital age[EB/OL](2018-04-10)[2021-10-15]. https://assets.coss.io/documents/whitepapers/reddcoin.pdf |
[90] |
BENTOV I, LEE C, MIZRAHI A, et al. Proof of activity: extending bitcoin’s proof of work via proof of stake[J]. ACM SIGMETRICS Performance Evaluation Review, 2014, 42(3): 34-37.
DOI URL |
[91] | BUTERIN V, GRIFFITH V. Casper the friendly finality gadget[J]. arXiv:1710.09437v4, 2017. |
[92] | ORLICKI J I. Fair proof-of-stake using VDF+VRF consensus[J]. arXiv: 2008.10189v2, 2020. |
[93] | BUTERIN V, HERNANDEZ D, KAMPHERFNER T, et al. Combining GHOST and casper[J]. arXiv: 2003.03052, 2020. |
[94] | DUONG T, FAN L, KATZ J, et al. 2-hop Blockchain: combining proof-of-work and proof-of-stake securely[C]// LNCS 12309: Proceedings of the 25th European Symposium on Research in Computer Security, Guildford, Sep 14-18, 2020. Cham: Springer, 2020: 697-712. |
[95] | KARANTIAS K, KIAYIAS A, ZINDROS D. Proof-of-burn[C]// LNCS 12059: Proceedings of the 24th International Conference on Financial Cryptography and Data Security 2020, Kota Kinabalu, Feb 10-14, 2020. Cham: Sprin-ger, 2020: 523-540. |
[96] | ABRAHAM I, MALKHI D, NAYAK K, et al. Solida: a blockchain protocol based on reconfigurable Byzantine consensus[J]. arXiv:1612.02916v2, 2016. |
[97] | PASS R, SHI E. Hybrid consensus: efficient consensus in the permissionless model[C]// Proceedings of the 31st International Symposium on Distributed Computing, Vienna, Oct 16-20, 2017. Leibniz: Zentrum für Informatik, 2017: 39. |
[98] | AI-BASSAM M, SONNINO A, BANO S, et al. Chainspace: a sharded smart contracts platform[J]. arXiv:1708.03778, 2017. |
[99] | ZAMANI M, MOVAHEDI M, BAYKOVA M, et al. RapidChain: scaling blockchain via full sharding[C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, Oct 15-19, 2018. New York: ACM, 2018: 931-948. |
[100] | DECKER C, SEIDEL J, WATTENHOFER R. Bitcoin meets strong consistency[J]. arXiv:1412.7935, 2014. |
[101] | KOKORIS-KOGIAS E, JOVANOVIC P, GASSER L, et al. OmniLedger:a secure, scale-out, decentralized ledger via sharding[C]// Proceedings of the 2018 IEEE Symposium on Security and Privacy, San Francisco, May 20-24, 2018. Washington: IEEE Computer Society, 2018: 583-598. |
[102] | SYTA E, JOVANOVIC P, KOKORIS-KOGIAS E, et al. Scalable bias-resistant distributed randomness[C]// Proceedings of the 2017 IEEE Symposium on Security and Privacy, San Jose, May 22-26, 2017. Washington: IEEE Computer Society, 2017: 444-460. |
[103] | WANG J P, WANG H. Monoxide: scale out blockchains with asynchronous consensus zones[C]// Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation, Boston, Feb 26-28, 2019. New Orleans: USENIX Association, 2019: 95-112. |
[104] | GILAD Y, HEMO R, MICALI S, et al. Algorand: scaling Byzantine agreements for cryptocurrencies[C]// Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, Oct 28-31, 2017. New York: ACM, 2017: 51-68. |
[105] | WANG Q, LI R J, CHEN S P, et al. Formal security analysis on dBFT protocol of NEO[C]// Proceedings of the 24th International Conference on Financial Cryptography and Data Security, Kota Kinabalu, Feb 10-14, 2020. Cham: Springer, 2020: 20-31. |
[106] | 王晨旭, 程加成, 桑新欣, 等. 区块链数据隐私保护: 研究现状与展望[J]. 计算机研究与发展, 2021, 58(10): 2099-2119. |
WANG C X, CHENG J C, SANG X X, et al. Data privacy-preserving for blockchain: state of the art and trends[J]. Journal of Computer Research and Development, 2021, 58(10): 2099-2119. |
[1] | LIU Tonglai, ZHANG Zikai, WU Jigang. System Model and Access Control Schemes for Medical Image Collaborative Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1779-1791. |
[2] | XIONG Xiao, LI Leixiao, GAO Jing, GAO Haoyu, DU Jinze, ZHENG Yue, NIU Tieming. Research Progress of Blockchain in Internet of Vehicles Data Sharing [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1008-1024. |
[3] | HAN Gang, LYU Yingze, LUO Wei, WANG Jiaqian. Privacy Data Protection Scheme for Patients with Major Outbreaks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 359-371. |
[4] | FAN Xing, NIU Baoning. BBF: Bloom Filter Variant for Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1921-1929. |
[5] | ZHOU Jian, SUN Liyan, FU Ming. Research on Wallet Protection Against Currency Failure in Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2039-2049. |
[6] | ZHENG Lianghan, HE Heng, TONG Qian, YANG Xiang, CHEN Xiang. Multi-authority Access Control Scheme in Cloud Environment [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1865-1878. |
[7] | WANG Qun, LI Fujuan, WANG Zhenli, LIANG Guangjun, XU Jie. Principle and Core Technology of Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1621-1643. |
[8] | JIA Dayu, XIN Junchang, WANG Zhiqiong, GUO Wei, WANG Guoren. Storage Capacity Scalable Model for Blockchain [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 525-535. |
[9] | LI Zhoujun, ZHANG Jiangxiao, FENG Chunhui, SUI Chunrong. Survey on E-Cash Scheme [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(11): 1701-1712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/