Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (11): 2430-2455.DOI: 10.3778/j.issn.1673-9418.2204004
• Surveys and Frontiers • Previous Articles Next Articles
LAN Haoliang1,2, LI Fujuan1,2, WANG Qun1, YIN Jie1, XU Jie1, HONG Lei1, XUE Yishi1, XIA Minghui1,+()
Received:
2022-04-02
Revised:
2022-07-22
Online:
2022-11-01
Published:
2022-11-16
About author:
LAN Haoliang, born in 1986, Ph.D., lecturer. His research interests include network security, network measurement and behavior, etc.Supported by:
兰浩良1,2, 李馥娟1,2, 王群1, 印杰1, 徐杰1, 洪磊1, 薛益时1, 夏明辉1,+()
通讯作者:
+ E-mail: xiaminghui@jspi.cn作者简介:
兰浩良(1986—),男,山东德州人,博士,讲师,主要研究方向为网络安全、网络测量与行为学等。基金资助:
CLC Number:
LAN Haoliang, LI Fujuan, WANG Qun, YIN Jie, XU Jie, HONG Lei, XUE Yishi, XIA Minghui. Anonymous Communication and Darknet Space Comprehensive Governance[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2430-2455.
兰浩良, 李馥娟, 王群, 印杰, 徐杰, 洪磊, 薛益时, 夏明辉. 匿名通信与暗网综合治理[J]. 计算机科学与探索, 2022, 16(11): 2430-2455.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2204004
系统 | 时间 | 延迟 | 优势 | 劣势 |
---|---|---|---|---|
Tor | 2003 | 低 | 多层加密 适用于TCP 可很好地支持Web应用 良好的性能 使用范围广,用户保有量大 | 端到端加密无法保证 匿名性依赖节点选择算法 可扩展性不足 目录服务器较集中 电路交换会导致拥塞和延迟 |
I2P | 2003 | 低 | 多层/隧道/端到端加密 适用于UDP/TCP 良好的可扩展性 分组交换具有良好的负载均衡 适于文件共享 | 匿名性依赖节点选择算法 节点选择导致匿名性降低 |
Freenet | 2001 | 高 | 良好的可扩展性 高度的信息可用性 不易被恶意节点侵入 Pre-routing可提供良好的匿名性 | 基础版本中秘钥匿名性难以保证 消息传递缺乏有效保护 难以抵御DDOS攻击及目录攻击 |
NatCamo | 2001 | 低 | 伪装流量模式可抵御流量分析 保证实时应用的响应时间 | 易暴露主机位置/类型/网络拓扑 流量伪装导致QoS下降 未考虑主机和路由器的地理分布 恶意节点入侵 集中管理节点模式导致低安全性 局域网之外的性能难以保证 |
Tarzan | 2002 | 低 | 可扩展性强 自组织和完全的去中心化 高效的对等点发现机制 覆盖流量机制可抵御流量分析 完整性检查降低了信息泄露风险 合理的隧道延迟 较高的吞吐量与消息转发速率 | 应用层交互会导致信息泄露 应用层附加信息易被攻击者利用 缺乏应对恶意路由器有效机制 |
Crowds | 1998 | 低 | 发送者匿名性与消息转发次数成正比 接受者匿名的可能性与用户规模成正比 公私秘钥的加解密操作对性能影响较小 单次中断不会影响所有Web事务 一定程度的本地浏览行为的可否认性 | 本身不支持接受者匿名 加解密方案导致性能降低 下一跳方式的重路由影响匿名性 用户要充当匿名代理 不能有效抵御DDOS攻击 |
Table 2 Typical anonymous communication systems
系统 | 时间 | 延迟 | 优势 | 劣势 |
---|---|---|---|---|
Tor | 2003 | 低 | 多层加密 适用于TCP 可很好地支持Web应用 良好的性能 使用范围广,用户保有量大 | 端到端加密无法保证 匿名性依赖节点选择算法 可扩展性不足 目录服务器较集中 电路交换会导致拥塞和延迟 |
I2P | 2003 | 低 | 多层/隧道/端到端加密 适用于UDP/TCP 良好的可扩展性 分组交换具有良好的负载均衡 适于文件共享 | 匿名性依赖节点选择算法 节点选择导致匿名性降低 |
Freenet | 2001 | 高 | 良好的可扩展性 高度的信息可用性 不易被恶意节点侵入 Pre-routing可提供良好的匿名性 | 基础版本中秘钥匿名性难以保证 消息传递缺乏有效保护 难以抵御DDOS攻击及目录攻击 |
NatCamo | 2001 | 低 | 伪装流量模式可抵御流量分析 保证实时应用的响应时间 | 易暴露主机位置/类型/网络拓扑 流量伪装导致QoS下降 未考虑主机和路由器的地理分布 恶意节点入侵 集中管理节点模式导致低安全性 局域网之外的性能难以保证 |
Tarzan | 2002 | 低 | 可扩展性强 自组织和完全的去中心化 高效的对等点发现机制 覆盖流量机制可抵御流量分析 完整性检查降低了信息泄露风险 合理的隧道延迟 较高的吞吐量与消息转发速率 | 应用层交互会导致信息泄露 应用层附加信息易被攻击者利用 缺乏应对恶意路由器有效机制 |
Crowds | 1998 | 低 | 发送者匿名性与消息转发次数成正比 接受者匿名的可能性与用户规模成正比 公私秘钥的加解密操作对性能影响较小 单次中断不会影响所有Web事务 一定程度的本地浏览行为的可否认性 | 本身不支持接受者匿名 加解密方案导致性能降低 下一跳方式的重路由影响匿名性 用户要充当匿名代理 不能有效抵御DDOS攻击 |
编号 | 算法 | 路由效率 | 路由表大小 | 拓扑结构 | 键值对位置 | 容错性 | 扩展性 | 负载均衡性 | 抗波动性 |
---|---|---|---|---|---|---|---|---|---|
1 | Chord | O(lbN) | O(lbN) | Ring | 后继节点 | 一般 | 好 | 不好 | 一般 |
2 | Pastry | O(lbN) | O(lbN) | Plaxton | 最近节点 | 较好 | 好 | 较好 | 一般 |
3 | Kademlia | O(K) | O(lbK) | Overlay | 最近K个节点 | 好 | 好 | 一般 | 好 |
Table 3 Typical DHT lookup strategies
编号 | 算法 | 路由效率 | 路由表大小 | 拓扑结构 | 键值对位置 | 容错性 | 扩展性 | 负载均衡性 | 抗波动性 |
---|---|---|---|---|---|---|---|---|---|
1 | Chord | O(lbN) | O(lbN) | Ring | 后继节点 | 一般 | 好 | 不好 | 一般 |
2 | Pastry | O(lbN) | O(lbN) | Plaxton | 最近节点 | 较好 | 好 | 较好 | 一般 |
3 | Kademlia | O(K) | O(lbK) | Overlay | 最近K个节点 | 好 | 好 | 一般 | 好 |
关键技术 | 描述 | 相关研究 | ||
---|---|---|---|---|
可访问性 | 保障匿名通信网络可访问性及匿名用户隐私的抗审查技术与架构 | [ | ||
匿名路由 | 洋葱路由 | 匿名路由协议的路由特性及其性能 | 洋葱路由策略的扩展 | [ |
DHT | 查找策略优化 | [ | ||
DC-Net | 协议效率、可扩展性、安全性 | [ | ||
大蒜路由 | I2P匿名性、安全性、性能 | [ | ||
隐藏服务 | 大规模隐藏服务发现、分析与提升 | [ |
Table 4 Anonymous communication key technologies
关键技术 | 描述 | 相关研究 | ||
---|---|---|---|---|
可访问性 | 保障匿名通信网络可访问性及匿名用户隐私的抗审查技术与架构 | [ | ||
匿名路由 | 洋葱路由 | 匿名路由协议的路由特性及其性能 | 洋葱路由策略的扩展 | [ |
DHT | 查找策略优化 | [ | ||
DC-Net | 协议效率、可扩展性、安全性 | [ | ||
大蒜路由 | I2P匿名性、安全性、性能 | [ | ||
隐藏服务 | 大规模隐藏服务发现、分析与提升 | [ |
序号 | 类别 | 描述 | 难点 | 相关研究 |
---|---|---|---|---|
1 | 暗网用户识别与定位 | 暗网用户身份识别与行为分析 | 暗网用户及身份行为的体系化认知 | [ |
2 | 隐藏服务发现 | 服务类型识别与溯源 | 隐藏服务的规模、普及率、可用性 | [ |
3 | 暗网内容及拓扑结构分析 | 暗网的构成、用途及用户行为 | 暗网的构成、用途及用户行为 | [ |
4 | 暗网节点发现 | 防止匿名滥用 | 快速、有效的暗网节点发现方法 | [ |
5 | 暗网流量识别与检测 | 防止匿名滥用 | 易于部署的暗网流量识别与监测方法 | [ |
6 | 暗网电子数据取证 | 搜集暗网犯罪证据 | 良好的取证框架、技术和工具 | [ |
7 | 暗网空间资源测绘 | 资源要素及用户行为 | 暗网规模、演化规律等的挖掘与分析 | [ |
Table 5 Darknet governance technologies
序号 | 类别 | 描述 | 难点 | 相关研究 |
---|---|---|---|---|
1 | 暗网用户识别与定位 | 暗网用户身份识别与行为分析 | 暗网用户及身份行为的体系化认知 | [ |
2 | 隐藏服务发现 | 服务类型识别与溯源 | 隐藏服务的规模、普及率、可用性 | [ |
3 | 暗网内容及拓扑结构分析 | 暗网的构成、用途及用户行为 | 暗网的构成、用途及用户行为 | [ |
4 | 暗网节点发现 | 防止匿名滥用 | 快速、有效的暗网节点发现方法 | [ |
5 | 暗网流量识别与检测 | 防止匿名滥用 | 易于部署的暗网流量识别与监测方法 | [ |
6 | 暗网电子数据取证 | 搜集暗网犯罪证据 | 良好的取证框架、技术和工具 | [ |
7 | 暗网空间资源测绘 | 资源要素及用户行为 | 暗网规模、演化规律等的挖掘与分析 | [ |
[1] | SIMIONI M. Investigative techniques for the de-anonymiza-tion of hidden services[J]. IEEE Security & Privacy, 2021, 19(2): 60-64. |
[2] | ADEWOPO V, GONEN B, VARLIOGLU S, et al. Plunge into the underworld: a survey on emergence of darknet[C]// Proceedings of the 2019 International Conference on Compu-tational Science and Computational Intelligence, Las Vegas, Dec 5-7, 2019. Piscataway: IEEE, 2019: 155-159. |
[3] | NIA M A, RUIZ-MARTINEZ A. Systematic literature review on the state of theart and future research work in anony-mous communications systems[J]. Computers & Electrical Engineering, 2018, 69(C): 497-520. |
[4] | FACHKHA C, DEBBABI M. Darknet as a source of cyber intelligence: survey, taxonomy, and characterization[J]. IEEE Communications Surveys & Tutorials, 2015, 18(2): 1197-1227. |
[5] | BIAN J, CAO C, WANG L, et al. Tor hidden services dis-covery and analysis: a literature survey[J]. Journal of Phy-sics: Conference Series, 2021, 1757(1): 012162. |
[6] | SHIRAZI F, SIMEONOVSKI M, ASGHAR M R, et al. A survey on routing in anonymous communication protocols[J]. ACM Computing Surveys, 2018, 51(3): 1-39. |
[7] |
CHAUM D L. Untraceable electronic mail, return addresses, and digital pseudonyms[J]. Communications of the ACM, 1981, 24(2): 84-90.
DOI URL |
[8] | REITER M K, RUBIN A D. Crowds: anonymity for Web transactions[J]. ACM Transactions on Information and Sys-tem Security, 1998, 1(1): 66-92. |
[9] |
GRASSMAN R, BRACAMONTE V, DAVIS M, et al. Atti-tudes to cryptocurrencies: a comparative study between Swe-den and Japan[J]. The Review of Socionetwork Strategies, 2021, 15(1): 169-194.
DOI URL |
[10] | EDMAN M, YENER B. On anonymity in an electronic society: a survey of anonymous communication systems[J]. ACM Computing Surveys, 2009, 42(1): 1-35. |
[11] | DANEZIS G, DINGLEDINE R, MATHEWSON N. Mix-Minion: design of a type III anonymous remailer protocol[C]// Proceedings of the 2003 Symposium on Security and Privacy, Berkeley, May 11-14, 2003. Piscataway: IEEE, 2003: 2-15. |
[12] | YU S, ZHAO G, DOU W, et al. Predicted packet padding for anonymous Web browsing against traffic analysis attacks[J]. IEEE Transactions on Information Forensics and Secu-rity, 2012, 7(4): 1381-1393. |
[13] | GOLDSCHLAG D, REED M, SYVERSON P. Onion routing[J]. Communications of the ACM, 1999, 42(2): 39-41. |
[14] | SIMMONS G J. The prisoners’ problem and the subliminal channel[C]// CHAUM D. Advances in Cryptology. Berlin, Heidelberg: Springer, 1984: 51-67. |
[15] | SHEN Y, YANG W, HUANG L. Concealed in Web surfing: behavior-based covert channels in HTTP[J]. Journal of Net-work and Computer Applications, 2018, 101: 83-95. |
[16] | FEAMSTER N, BALAZINSKA M, HARFST G, et al. Infra-net: circumventing Web censorship and surveillance[C]// Proceedings of the CRYPTO’83 Advances in Cryptology, Santa Barbara, Aug 21-24, 1983. Berlin, Heidelberg: Springer, 1984: 51-67. |
[17] | CHOURIB M, WENDZEL S, MAZURCZYK W, et al. Adap-tive warden strategy for countering network covert storage channels[C]// Proceedings of the 46th IEEE Conference on Local Computer Networks, Edmonton, Oct 4-7, 2021. Pisca-taway: IEEE, 2021: 148-153. |
[18] | KOHLWEISS M, MADATHIL V, NAYAK K, et al. On the anonymity guarantees of anonymous proof-of-stake proto-cols[C]// Proceedings of the 2021 IEEE Symposium on Secu-rity and Privacy, San Francisco, May 24-27, 2021. Piscata-way: IEEE, 2021: 1818-1833. |
[19] | BUCCAFURRI F, DE ANGELIS V, IDONE M F, et al. Wip: an onion-based routing protocol strengthening anony-mity[C]// Proceedings of the 22nd IEEE International Sym-posium on a World of Wireless, Mobile and Multimedia Net-works, Pisa, Jun 7-11, 2021. Piscataway: IEEE, 2021: 231-235. |
[20] |
LU T, DU Z, WANG Z J. A survey on measuring anonymity in anonymous communication systems[J]. IEEE Access, 2019, 7: 70584-70609.
DOI |
[21] | BASYONI L M. Enhancing the performance and security of anonymous communication networks[D]. Doha: Qatar Univer-sity, 2022. |
[22] | LING Z, LUO J, YU W, et al. Tor bridge discovery: extensive analysis and large-scale empirical evaluation[J]. IEEE Tran-sactions on Parallel and Distributed Systems, 2013, 26(7): 1887-1899. |
[23] | DUTTA N, JADAV N, TANWAR S, et al. DarkNet and hid-den services: cyber security: issues and current trends[M]. Berlin, Heidelberg: Springer, 2022: 57-69. |
[24] |
JAVIDBAKHT O, VENKITASUBRAMANIAM P. Delay anonymity tradeoff in mix networks: optimal routing[J]. IEEE/ACM Transactions on Networking, 2017, 25(2): 1162-1175.
DOI URL |
[25] |
CHAUM D. The dining cryptographers problem: unconditional sender and recipient untraceability[J]. Journal of Cryptology, 1988, 1(1): 65-75.
DOI URL |
[26] | SIRER E G, POLTE M, ROBSON M, et al. Cliquenet: a self-organizing, scalable, peer-to-peer anonymous commu-nication substrate[EB/OL]. [2022-01-12]. https://www.cs.co-rnell.edu/people/egs/papers/cliquenet-iptp.pdf. |
[27] | SARDROUD A A, DOUSTI M S, JALILI R. An efficient DC-net based anonymous message transmission protocol[C]// Proceedings of the 6th International ISC Conference on Information Security and Cryptology, Esfahan, Dec 2-4, 2009. Berlin, Heidelberg: Springer, 2009: 23-30. |
[28] | REN J, LI T, LI Y. Anonymous communications in overlay networks[C]// Proceedings of the 2008 IEEE Military Commu-nications Conference, San Diego, Nov 16-19, 2008. Piscata-way: IEEE, 2008: 1-6. |
[29] |
HARATY R A, ZANTOUT B. The TOR data communica-tion system[J]. Journal of Communications and Networks, 2014, 16(4): 415-420.
DOI URL |
[30] | BAZLI B, WILSON M, HURST W. The dark side of I2P, a forensic analysis case study[J]. Systems Science & Control Engineering, 2017, 5(1): 278-286. |
[31] | CLARKE I, SANDBERG O, WILEY B, et al. Freenet: a distributed anonymous information storage and retrieval sys-tem[C]// Proceedings of the 2000 International Workshop on Design Issues in Anonymity and Unobservability, Berkeley, Jul 25-26, 2000. Berlin, Heidelberg: Springer, 2000: 46-66. |
[32] | GUAN Y, FU X, XUAN D, et al. NetCamo: camouflaging network traffic for qos-guaranteed mission critical applica-tions[J]. IEEE Transactions on Systems, Man, and Cyber-netics-Part A: Systems and Humans, 2001, 31(4): 253-265. |
[33] | FREEDMAN M J, MORRIS R. Tarzan: a peer-to-peer anon-ymizing network layer[C]// Proceedings of the 9th ACM Con-ference on Computer and Communications Security, Washing-ton, Nov 18-22, 2002. New York: ACM, 2002: 193-206. |
[34] | REITER M K, RUBIN A D. Anonymous Web transactions with crowds[J]. Communications of the ACM, 1999, 42(2): 32-48. |
[35] | KWON A H, LAZAR D, DEVADAS S, et al. Riffle: an efficient communication system with strong anonymity[J]. Privacy Enhancing Technologies, 2016(2): 115-134. |
[36] | ZHU T, FENG D, HUA Y, et al. Mic: an efficient anonymous communication system in data center networks[C]// Procee-dings of the 2016 International Conference on Parallel Proces-sing, Philadelphia, Aug 16-19, 2016. Piscataway: IEEE, 2016: 11-20. |
[37] | WEI H, BAI G, LUO Z. Foggy: a new anonymous commu-nication architecture based on microservices[C]// Proceedings of the 2020 International Conference on Engineering of Complex Computer Systems, Singapore, Oct 28-31, 2020. Piscataway: IEEE, 2020: 135-144. |
[38] | ENSAFI R, FIFIELD D, WINTER P, et al. Examining how the great firewall discovers hidden circumvention servers[C]// Proceedings of the 2015 Internet Measurement Conference, Tokyo, Oct 28-30, 2015. New York: ACM, 2015: 445-458. |
[39] | FROLOV S, WAMPLER J, TAN S C, et al. Conjure: sum-moning proxies from unused address space[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Com-munications Security, London, Nov 11-15, 2019. New York: ACM, 2019: 2215-2229. |
[40] | BOCK K, HUGHEY G, QIANG X, et al. Geneva: evolving censorship evasion strategies[C]// Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-tions Security, London, Nov 11-15, 2019. New York: ACM, 2019: 2199-2214. |
[41] | WUSTROW E, WOLCHOK S, GOLDBERG I, et al. Telex: anticensorship in the network infrastructure[C]// Proceedings of the USENIX Security Symposium, San Francisco, Aug 8-12, 2011. Berkeley: USENIX, 2011: 30-45. |
[42] | BRUBAKER C, HOUMANSADR A, SHMATIKOV V. Cloud-transport: using cloud storage for censorship-resistant net-working[C]// Proceedings of the 2014 International Sympo-sium on Privacy Enhancing Technologies Symposium, Ams-terdam, Jul 16-18, 2014. Cham: Springer, 2014: 1-20. |
[43] | ZAMANI M, SAIA J, CRANDALL J. TorBricks: blocking-resistant Tor bridge distribution[C]// Proceedings of the 2017 International Symposium on Stabilization, Safety, and Security of Distributed Systems, Boston, Nov 5-8, 2017. Cham: Sprin-ger, 2017: 426-440. |
[44] | DYER K P, COULL S E, SHRIMPTON T. Marionette: a progra-mmable network traffic obfuscation system[C]// Proceedings of the 24th USENIX Security Symposium, Washington, Aug 12-14, 2015. Berkeley: USENIX, 2015: 367-382. |
[45] | WEINBERG Z, WANG J, YEGNESWARAN V, et al. Stego-Torus: a camouflage proxy for the Tor anonymity system[C]// Proceedings of the 2012 ACM Conference on Com-puter and Communications Security, Raleigh, Oct 16-18, 2012. New York: ACM, 2012: 109-120. |
[46] | LUCHAUP D, DYER K P, JHA S, et al. LibFTE: a toolkit for constructing practical format-abiding encryption schemes[C]// Proceedings of the 23rd USENIX Security Symposium, San Diego, Aug 20-22, 2014. Berkeley: USENIX, 2014: 877-891. |
[47] | WANG Q, GONG X, NGUYEN G T K, et al. Censors-poofer: asymmetric communication using IP spoofing for censorship-resistant Web browsing[C]// Proceedings of the 2012 ACM Conference on Computer and Communications Security, New York, Oct 16-18, 2012. New York: ACM, 2012: 121-132. |
[48] | SYVERSON P, TSUDIK G, REED M, et al. Towards an analysis of onion routing security[C]// Proceeedings of the 2001 International Workshop on Design Issues in Anony-mity and Unobservability, Berkeley, Jul 25-26, 2001. Berlin, Heidelberg: Springer, 2001: 96-114. |
[49] | BACKES M, KATE A, MEISER S, et al. (Nothing else) MATor (s) monitoring the anonymity of Tor’s path selection[C]// Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, Scottsdale Arizona, Nov 3-7, 2014. New York: ACM, 2014: 513-524. |
[50] | DE LA CADENA RAMOS A W. Multipath routing on anon-ymous communication systems: enhancing privacy and per-formance[D]. Luxembourg: University of Luxembourg, 2021. |
[51] | WAN S. Topology hiding routing based on learning with errors[J]. Concurrency and Computation: Practice and Expe-rience, 2020: e5740. |
[52] | XIA Y, CHEN R, SU J, et al. Hybrid routing: towards resi-lient routing in anonymous communication networks[C]// Proceedings of the 2020 IEEE International Conference on Communications, Dublin, Jun 7-11, 2020. Piscataway: IEEE, 2020: 1-7. |
[53] | MITSEVA A, ALEKSANDROVA M, ENGEL T, et al. Secu-rity and performance implications of BGP rerouting-resis-tant guard selection algorithms for Tor[C]// Proceedings of the 2020 IFIP International Conference on ICT Systems Security and Privacy Protection. Cham: Springer, 2020: 219-233. |
[54] | CHAUHAN M, SINGH A K. Survey of onion routing app-roaches: advantages, limitations and future scopes[C]// Procee-dings of the 2019 International Conference on Computer Networks, Big Data and IoT, Madurai, Dec 19-20, 2019. Cham: Springer, 2019: 686-697. |
[55] | MAYMOUNKOV P, MAZIERES D. Kademlia: a peer-to-peer information system based on the Xor metric[C]// Procee-dings of the 2002 International Workshop on Peer-to-Peer Systems, Cambridge, Mar 7-8, 2002. Berlin, Heidelberg: Sprin-ger, 2002: 53-65. |
[56] |
STOICA I, MORRIS R, LIBEN-NOWELL D, et al. Chord: a scalable peer-to-peer lookup protocol for internet applica-tions[J]. IEEE/ACM Transactions on Networking, 2003, 11(1): 17-32.
DOI URL |
[57] | ROWSTRON A, DRUSCHEL P. Pastry:scalable, decentra-lized object location, and routing for large-scale peer-to-peer systems[C]// Proceedings of the 2001 IFIP/ACM Inter-national Conference on Distributed Systems Platforms and Open Distributed Processing, Heidelberg, Nov 12-16, 2001. Berlin, Heidelberg: Springer, 2001: 329-350. |
[58] |
OWENSON G, CORTES S, LEWMAN A. The darknet’s smaller than we thought: the life cycle of Tor hidden servi-ces[J]. Digital Investigation, 2018, 27: 17-22.
DOI URL |
[59] | MCLACHLAN J, TRAN A, HOPPER N, et al. Scalable onion routing with torsk[C]// Proceedings of the 16th ACM Conference on Computer and Communications Security, Chicago, Nov 9-13, 2009. New York: ACM, 2009: 590-599. |
[60] |
RUSLAN R, ZAILANI A S M, ZUKRI N H M, et al. Rou-ting performance of structured overlay in distributed Hash tables (DHT) for P2P[J]. Bulletin of Electrical Engineering and Informatics, 2019, 8(2): 389-395.
DOI URL |
[61] | GOEL S, ROBSON M, POLTE M, et al. Herbivore: a sca-lable and efficient protocol for anonymous communication: TR2003-1890[R]. Ithaca: Cornell University, 2003. |
[62] | CORRIGAN-GIBBS H, FORD B. Dissent: accountable ano-nymous group messaging[C]// Proceedings of the 17th ACM Conference on Computer and Communications Security, Chicago, Oct 4-8, 2010. New York: ACM, 2010: 340-350. |
[63] | ABRAHAM I, PINKAS B, YANAI A. Blinder-scalable, robust anonymous committed broadcast[C]// Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communica-tions Security, Reiter, Nov 9-13, 2020. New York: ACM, 2020: 1233-1252. |
[64] | NOSOUHI M R, YU S, SOOD K, et al. HSDC-Net: secure anonymous messaging in online social networks[C]// Procee-dings of the 18th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data Science and Engineering, Rotorua, Aug 5-8, 2019. Piscataway: IEEE, 2019: 350-357. |
[65] | GRIGG J. Looking for group: open research questions about I2P[C]// Proceedings of 10th Workshop on Hot Topics in Privacy Enhancing Technologies, Minneapolis, Jul 18-21, 2017. Cham: Springer, 2017. |
[66] | TIMPANARO J P, CHOLEZ T, CHRISMENT I, et al. Eva-luation of the anonymous I2P network’s design choices aga-inst performance and security[C]// Proceedings of the 2015 International Conference on Information Systems Security and Privacy, Angers, Feb 9-11, 2015. Piscataway: IEEE, 2015: 1-10. |
[67] | LIU P, WANG L, TAN Q, et al. Empirical measurement and analysis of I2P routers[J]. Journal of Networks, 2014, 9(9): 2269. |
[68] | GAO Y, TAN Q, SHI J, et al. Large-scale discovery and empi-rical analysis for I2P eepSites[C]// Proceedings of the 2017 IEEE Symposium on Computers and Communications, Hera-klion, Jul 3-6, 2017. Piscataway: IEEE, 2017: 444-449. |
[69] | DIAB T, GILG M, DROUHIN F, et al. Anonymizing com-munication in VANets by applying I2P mechanisms[C]// Proceedings of 2019 IEEE Global Communications Confe-rence, Waikoloa, Dec 9-13, 2019. Piscataway: IEEE, 2019: 1-6. |
[70] | BIRYUKOV A, PUSTOGAROV I, THILL F, et al. Content and popularity analysis of Tor hidden services[C]// Procee-dings of the 34th International Conference on Distributed Computing Systems Workshops, Madrid, Jun 30-Jul 3, 2014. Piscataway: IEEE, 2014: 188-193. |
[71] | BIRYUKOV A, PUSTOGAROV I, WEINMANN R P. Traw-ling for Tor hidden services: detection, measurement, deano-nymization[C]// Proceedings of the 2013 IEEE Symposium on Security and Privacy, Berkeley, May 19-22, 2013. Pisca-taway: IEEE, 2013: 80-94. |
[72] | KWON A, ALSABAH M, LAZAR D, et al. Circuit finger-printing attacks: passive deanonymization of Tor hidden services[C]// Proceedings of 24th USENIX Security Sympo-sium, Austin, Aug 10-12, 2015. Berkeley: USENIX, 2015: 287-302. |
[73] | LOESING K, SANDMANN W, WILMS C, et al. Perfor-mance measurements and statistics of Tor hidden services[C]// Proceedings of the 2008 International Symposium on Applications and the Internet, Turku, Jul 28-Aug 1, 2008. Piscataway: IEEE, 2008: 1-7. |
[74] | NAIR V, KANNIMOOLA J M. A tool to extract onion links from Tor hidden services and identify illegal activities[M]. Singapore: Springer, 2022: 29-37. |
[75] | AL JAWAHERI H, AL SABAH M, BOSHMAF Y, et al. Dea-nonymizing Tor hidden service users through bitcoin transac-tions analysis[J]. Computers & Security, 2020, 89: 101684. |
[76] | ØVERLIER L, SYVERSON P. Valet services: improving hidden servers with a personal touch[C]// Proceedings of the 2006 International Workshop on Privacy Enhancing Techno-logies. Berlin, Heidelberg: Springer, 2006: 223-244. |
[77] | LIANG J, LIU Y. An improved method to build a circuit of Tor hidden service[C]// Proceedings of the 2018 International Conference on Automation, Mechanical Control and Com-putational Engineering, Dalian, May 12, 2018. Paris: Atlantis Press, 2018: 12-14. |
[78] | PFITZMANN A, KÖHNTOPP M. Anonymity, unobserva-bility, and pseudonymity—a proposal for terminology[C]// LNCS 2009:Proceedings of the Designing Privacy Enhan-cing Technologies, Berkeley, Jul 25-26, 2001. Berlin, Heidel-berg: Springer, 2001: 1-9. |
[79] | DINGLEDINE R, FREEDMAN M J, MOLNAR D. The free haven project: distributed anonymous storage service[C]// LNCS 2009:Proceedings of the Designing Privacy Enhan-cing Technologies, Berkeley, Jul 25-26, 2001. Berlin, Heidel-berg: Springer, 2001: 67-95. |
[80] | BERTHOLD O, PFITZMANN A, STANDTKE R. The dis-advantages of free MIX routes and how to overcome them[C]// LNCS 2009:Proceedings of the Designing Privacy Enhan-cing Technologies, Berkeley, Jul 25-26, 2001. Berlin, Heidel-berg: Springer, 2001: 30-45. |
[81] | SHIELDS C, LEVINE B N. A protocol for anonymous com-munication over the Internet[C]// Proceedings of the 7th ACM Conference on Computer and Communications Security, Athens, Nov 1-4, 2000. New York: ACM, 2000: 33-42. |
[82] | SERJANTOV A, DANEZIS G. Towards an information theo-retic metric for anonymity[C]// Proceedings of the 2002 Inter-national Workshop on Privacy Enhancing Technologies, Apr 14-15, 2002. Berlin, Heidelberg: Springer, 2002: 41-53. |
[83] | SHMATIKOV V, WANG M H. Measuring relationship anon-ymity in mix networks[C]// Proceedings of the 5th ACM Workshop on Privacy in Electronic Society, Virginia, Oct 30, 2006. New York: ACM, 2006: 59-62. |
[84] | WAILS R, SUN Y, JOHNSON A, et al. Tempest: temporal dynamics in anonymity systems[J]. Privacy Enhancing Tech-nologies, 2018, 3: 22-42. |
[85] | KUHN C, BECK M, SCHIFFNER S, et al. On privacy notions in anonymous communication[J]. Privacy Enhancing Tech-nologies, 2019, 2: 105-125. |
[86] | TYAGI N, GILAD Y, LEUNG D, et al. Stadium: a distri-buted metadata-private messaging system[C]// Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, Oct 28, 2017. New York: ACM, 2017: 423-440. |
[87] | LEVINE B N, REITER M K, WANG C, et al. Timing attacks in low-latency mix-based systems[C]// LNCS 3110: Proceedings of the 2004 International Conference on Fina-ncial Cryptography, Key West, Feb 9-12, 2004. Berlin, Hei-delberg: Springer, 2004: 251-265. |
[88] | MURDOCH S J, DANEZIS G. Low-cost traffic analysis of Tor[C]// Proceedings of the 2005 IEEE Symposium on Secu-rity and Privacy, Oakland, May 8-11, 2005. Piscataway: IEEE, 2005: 183-195. |
[89] | WIANGSRIPANAWAN R, SUSILO W, SAFAVI-NAINI R. Design principles for low latency anonymous network sys-tems secure against timing attacks[C]// Proceedings of the 5th Australasian Symposium on ACSW Frontiers, Ballarat, Jan 30, 2007. New York: ACM, 2007: 183-191. |
[90] | CAMBIASO E, VACCARI I, PATTI L, et al. Darknet secu-rity: a categorization of attacks to the Tor network[C]// Proceedings of the 3rd Italian Conference on Cyber Secu-rity, Pisa, Feb 13-15, 2019: 1-12. |
[91] | BACKES M, MANOHARAN P, MOHAMMADI E. Tuc: time-sensitive and modular analysis of anonymous commu-nication[C]// Proceedings of the 27th Computer Security Foun-dations Symposium, Vienna, Jul 19-22, 2014. Piscataway: IEEE, 2014: 383-397. |
[92] | YANG M, GU X, LING Z, et al. An active de-anonymizing attack against Tor Web traffic[J]. Tsinghua Science and Tech-nology, 2017, 22(6): 702-713. |
[93] | BASYONI L, FETAIS N, ERBAD A, et al. Traffic analysis attacks on Tor: a survey[C]// Proceedings of the 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies, Doha, Feb 2-5, 2020. Piscataway: IEEE, 2020: 183-188. |
[94] |
XU G, LIU J, LU Y, et al. A novel efficient MAKA protocol with desynchronization for anonymous roaming service in global mobility networks[J]. Journal of Network and Computer Applications, 2018, 107: 83-92.
DOI URL |
[95] | PULLS T, DAHLBERG R. Website fingerprinting with Web-site oracles[J]. Proceedings on Privacy Enhancing Techno-logies, 2020(1): 235-255. |
[96] |
ATTARIAN R, ABDI L, HASHEMI S. AdaWFPA: adaptive online website fingerprinting attack for Tor anonymous net-work: a stream-wise paradigm[J]. Computer Communications, 2019, 148: 74-85.
DOI URL |
[97] | CHERUBIN G, JANSEN R, TRONCOSO C. Online website fingerprinting: evaluating website fingerprinting attacks on Tor in the real world[C]// Proceedings of the 2022 USENIX Security Symposium, Boston, Aug 10-12, 2022. Berkeley: USENIX, 2002. |
[98] | CUI W, CHEN T, FIELDS C, et al. Revisiting assumptions for website fingerprinting attacks[C]// Proceedings of the 2019 ACM Asia Conference on Computer and Communications Security, Auckland, Jul 9-12, 2019. New York: ACM, 2019: 328-339. |
[99] | SIRINAM P, IMANI M, JUAREZ M, et al. Deep finger-printing: undermining website fingerprinting defenses with deep learning[C]// Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toro-nto, Oct 15-19, 2018. New York: ACM, 2018: 1928-1943. |
[100] | ZHUO Z, ZHANG Y, ZHANG Z, et al. Website finger-printing attack on anonymity networks based on profile hidden Markov model[J]. IEEE Transactions on Information Foren-sics and Security, 2017, 13(5): 1081-1095. |
[101] | DE LA CADENA W, MITSEVA A, HILLER J, et al. Traffic-sliver: fighting website fingerprinting attacks with traffic splitting[C]// Proceedings of the 2020 ACM SIGSAC Confe-rence on Computer and Communications Security. New York: ACM, 2020: 1971-1985. |
[102] |
WRIGHT M K, ADLER M, LEVINE B N, et al. The prede-cessor attack: an analysis of a threat to anonymous com-munications systems[J]. ACM Transactions on Information and System Security, 2004, 7(4): 489-522.
DOI URL |
[103] | GE K, HE Y. Detection of Sybil attack on Tor resource dis-tribution[C]// Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems, Shenyang, Jul 28-30, 2020. Piscataway: IEEE, 2020: 328-332. |
[104] | BARTON A, WRIGHT M. DeNASA: destination-naive AS-awareness in anonymous communications[J]. Proceedings on Privacy Enhancing Technologies, 2016(4): 356-372. |
[105] | TABRIZ P, BORISOV N. Breaking the collusion detection mechanism of MorphMix[C]// Proceedings of the 2006 Inter-national Workshop on Privacy Enhancing Technologies, Cambridge, Jun 28-30, 2006. Berlin, Heidelberg: Springer, 2006: 368-383. |
[106] | JANSEN R, TSCHORSCH F, JOHNSON A, et al. The sniper attack: anonymously deanonymizing and disabling the Tor network[C]// Proceedings of the 21st Annual Network and Distributed System Security Symposium, San Diego, Feb 23-26, 2014. Reston: ISOC, 2014: 1-15. |
[107] | JANSEN R, VAIDYA T, SHERR M. Point break: a study of bandwidth denial-of-service attacks against Tor[C]// Procee-dings of the 28th USENIX Security Symposium, Santa Clara, Aug 14-16, 2019. Berkeley: USENIX, 2019: 1823-1840. |
[108] | MANE Y D, KHOT U P. An efficient technique to detect slow rate DDoS attack from a private Tor network[J]. Inter-national Journal of Electronic Security and Digital Foren-sics, 2021, 13(1): 88-104. |
[109] |
XIA Y, CHEN R, SU J, et al. Balancing anonymity and resi-lience in anonymous communication networks[J]. Computers & Security, 2021, 101: 102106.
DOI URL |
[110] | BOUSSADA R, ELHDHILI M E, SAIDANE L A. A survey on privacy: terminology, mechanisms and attacks[C]// Procee-dings of the 13th International Conference on Computer Sys-tems and Applications, Agadir, Nov 29-Dec 1, 2016. Pisca-taway: IEEE, 2016: 1-7. |
[111] | DANEZIS G, SASSAMAN L. Heartbeat traffic to counter (n-1) attacks: red-green-black mixes[C]// Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society, Washington, Oct 30, 2003. New York: ACM, 2003: 89-93. |
[112] | PIOTROWSKA A M, HAYES J, ELAHI T, et al. The loopix anonymity system[C]// Proceedings of the 26th USENIX Security Symposium, Vancouver, Aug 16-18, 2017. Berkeley: USENIX, 2017: 1199-1216. |
[113] | CONRAD B, SHIRAZI F. A survey on Tor and I2P[C]// Proceedings of the 9th International Conference on Internet Monitoring and Protection, Paris, Jul 20-24, 2014. Wilmin-gton: IARIA XPS, 2014: 22-28. |
[114] | RIES T, PANCHENKO A, ENGEL T. Comparison of low-latency anonymous communication systems-practical usage and performance[C]// Proceedings of the 9th Australasian Information Security Conference, Perth, Jan 17-20, 2011. Darlinghurst: ACS, 2011: 77-86. |
[115] | HOANG N P, KINTIS P, ANTONAKAKIS M, et al. An empi-rical study of the I2P anonymity network and its censor-ship resistance[C]// Proceedings of the 2018 Internet Measure-ment Conference, Boston, Oct 31-Nov 2, 2018. New York: ACM, 2018: 379-392. |
[116] | KIRAN K, SAURABH S, USMAN M, et al. Anonymity and performance analysis of stream isolation in Tor network[C]// Proceedings of the 10th International Conference on Computing, Communication and Networking Technologies, Kanpur, Jul 6-8, 2019. Piscataway: IEEE, 2019: 1-6. |
[117] | CUSTURA A, LEARMONTH I, FAIRHURST G. Measu-ring mobile performance in the Tor network with Onion-Perf[C]// Proceedings of the 2019 Network Traffic Measure-ment and Analysis Conference, Paris, Jun 19-21, 2019. Pisca-taway: IEEE, 2019: 233-238. |
[118] | KUHN C, KITZING F, STRUFE T. Sok on performance bounds in anonymous communication[C]// Proceedings of the 19th Workshop on Privacy in the Electronic Society. New York: ACM, 2020: 21-39. |
[119] | PANCHENKO A, LANZE F, ENGEL T. Improving perfor-mance and anonymity in the Tor network[C]// Proceedings of the 31st International Performance Computing and Commu-nications Conference, Austin, Dec 1-3, 2012. Piscataway: IEEE, 2012: 1-10. |
[120] |
SANGEETHA K, RAVIKUMAR K. A novel traffic dividing and scheduling mechanism for enhancing ssecurity and perfor-mance in the Tor network[J]. Indian Journal of Science and Technology, 2015, 8(7): 689.
DOI URL |
[121] | BARTON A, WRIGHT M, MING J, et al. Towards predic-ting efficient and anonymous Tor circuits[C]// Proceedings of the 27th USENIX Security Symposium, Baltimore, Aug 15-17, 2018. Berkeley: USENIX, 2018: 429-444. |
[122] |
GIRRY K T, OHZAHATA S, WU C, et al. Reducing congestion in the Tor network with circuit switching[J]. Journal of Information Processing, 2015, 23(5): 589-602.
DOI URL |
[123] | TANG C, GOLDBERG I. An improved algorithm for Tor circuit scheduling[C]// Proceedings of the 17th ACM Confe-rence on Computer and Communications Security, Chicago, Oct 4-8, 2010. New York: ACM, 2010: 329-339. |
[124] | CRENSHAW A. Darknets and hidden servers: identifying the true IP/network identity of I2P service hosts[J]. Black Hat DC, 2011, 201(1): 1-23. |
[125] | MATIC S, KOTZIAS P, CABALLERO J. Caronte: detec-ting location leaks for deanonymizing Tor hidden services[C]// Proceedings of the 2015 ACM SIGSAC Conference on Computer and Communications Security, Denver, Oct 12-16, 2015. New York: ACM, 2015: 1455-1466. |
[126] | SANATINIA A, NOUBIR G. Honey onions: a framework for characterizing and identifying misbehaving Tor HSDirs[C]// Proceedings of the 2016 IEEE Conference on Communi-cations and Network Security, Philadelphia, Oct 17-19, 2016. Piscataway: IEEE, 2016: 127-135. |
[127] | SANCHEZ-ROLA I, BALZAROTTI D, SANTOS I. The onions have eyes: a comprehensive structure and privacy analysis of Tor hidden services[C]// Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 1251-1260. |
[128] | SOSKA K, CHRISTIN N. Measuring the longitudinal evo-lution of the online anonymous marketplace ecosystem[C]// Proceedings of the 24th USENIX Security Symposium, Was-hington, Aug 12-14, 2015. Berkeley: USENIX, 2015: 33-48. |
[129] | CHRISTIN N. Traveling the Silk Road: a measurement anal-ysis of a large anonymous online marketplace[C]// Procee-dings of the 22nd International Conference on World Wide Web, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 213-224. |
[130] | GHOSH S, DAS A, PORRAS P, et al. Automated catego-rization of onion sites for analyzing the darkweb ecosystem[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Hali-fax, Aug 13-17, 2017. New York: ACM, 2017: 1793-1802. |
[131] | BERNASCHI M, CELESTINI A, GUARINO S, et al. Exp-loring and analyzing the Tor hidden services graph[J]. ACM Transactions on the Web, 2017, 11(4): 1-26. |
[132] | WANG X, SHI J, FANG B, et al. An empirical analysis of family in the Tor network[C]// Proceedings of the 2013 IEEE International Conference on Communications, Budapest, Jun 9-13, 2013. Piscataway: IEEE, 2013: 1995-2000. |
[133] | WINTER P, ENSAFI R, LOESING K, et al. Identifying and characterizing Sybils in the Tor network[C]// Proceedings of the 25th USENIX Security Symposium, Austin, Aug 10-12, 2016. Berkeley: USENIX, 2016: 1169-1185. |
[134] | HE G, YANG M, GU X, et al. A novel active website finger-printing attack against Tor anonymous system[C]// Procee-dings of the 18th International Conference on Computer Supported Cooperative Work in Design, Hsinchu, May 21-23, 2014. Piscataway: IEEE, 2014: 112-117. |
[135] | WANG T, CAI X, NITHYANAND R, et al. Effective attacks and provable defenses for website fingerprinting[C]// Procee-dings of the 23rd USENIX Security Symposium, San Diego, Aug 20-22, 2014. Berkeley: USENIX, 2014: 143-157. |
[136] | WANG T, GOLDBERG I. On realistically attacking Tor with website fingerprinting[J]. Proceedings on Privacy Enhan-cing Technologies, 2016(4): 21-36. |
[137] | HERRMANN D, WENDOLSKY R, FEDERRATH H. Web-site fingerprinting: attacking popular privacy enhancing tech-nologies with the multinomial naïve-Bayes classifier[C]// Proceedings of the 2009 ACM Workshop on Cloud Com-puting Security, Chicago, Nov 13, 2009. New York: ACM, 2009: 31-42. |
[138] | SPITTERS M, KLAVER F, KOOT G, et al. Authorship anal-ysis on dark marketplace forums[C]// Proceedings of the 2015 European Intelligence and Security Informatics Conference, Manchester, Sep 7-9, 2015. Piscataway: IEEE, 2015: 1-8. |
[139] | TIMPANARO J P, CHRISMENT I, FESTOR O. A bird’s eye view on the I2P anonymous file-sharing environment[C]// Proceedings of the 2012 International Conference on Network and System Security, Wuyishan, Nov 21-23, 2012. Berlin, Heidelberg: Springer, 2012: 135-148. |
[140] |
DEMANT J, MUNKSGAARD R, DÉCARY-HÉTU D, et al. Going local on a global platform: a critical analysis of the transformative potential of cryptomarkets for organi-zed illicit drug crime[J]. International Criminal Justice Review, 2018, 28(3): 255-274.
DOI URL |
[141] | BERNARD-JONES E, ONAOLAPO J, STRINGHINI G. BABELTOWER: how language affects criminal activity in stolen Webmail accounts[C]// Proceedings of the Web Confe-rence, Lyon, Apr 21-23, 2018. New York: ACM, 2018: 991-999. |
[142] | SIKARWAR N S. Darknet forensics[J]. International Journal of Emerging Trends & Technology in Computer Science, 2017, 6(4): 77-79. |
[143] | ALOTAIBI M A, ALZAIN M A, SOH B, et al. Computer forensics: dark net forensic framework and tools used for digital evidence detection[J]. International Journal of Commu-nication Networks and Information Security, 2019, 11(3): 424-431. |
[144] | 汤艳君, 安俊霖. 暗网案件的爬虫取证技术研究[J]. 中国刑警学院学报, 2018(5): 115-118. |
TANG Y J, AN J L. Research on crawler forensics techno-logy for darknet cases[J]. Journal of Criminal Investigation Police University of China, 2018(5): 115-118. | |
[145] | GUPTA A, DESAI A U, SAHAI A. Digital forensics of raspberry Pi used for MITM[M]. Cham: Springer, 2020: 123-153. |
[146] | WEIMANN G. Going dark: terrorism on the dark Web[J]. Studies in Conflict & Terrorism, 2016, 39(3): 195-206. |
[147] | WEIDMAN M. Jurisdiction, the Internet, and the good faith exception: controversy over the government’s use of network investigative techniques[J]. Dickinson Law Review, 2018, 122(3): 967-996. |
[148] | XU R, ZHANG Z Y, RAO Z H, et al. Cyberspace surve-ying and mapping: hierarchical model and resource formali-zation[C]// Proceedings of the 2019 IEEE INFOCOM Workshops, Paris, Sep 23, 2019. Piscataway: IEEE, 2019: 68-72. |
[149] | GROTHOFF C, WACHS M, ERMERT M, et al. Toward sec-ure name resolution on the Internet[J]. Computers & Secu-rity, 2018, 77: 694-708. |
[150] | Shodan[EB/OL]. [2022-01-12]. http://www.shodanhq.com. |
[151] | ZoomEye[EB/OL]. [2022-01-12]. http://www.zoomeye.org. |
[152] | Global programme on cybercrime[EB/OL]. (2019-01-10) [2022-01-12]. https://www.unodc.org. |
[153] | Cybercrime repository[EB/OL]. (2019-01-10) [2022-01-12]. http://www.unodc.org. |
[154] | 外交部. 司法协助类条约缔约情况一览表[EB/OL]. (2018-12-22) [2022-01-12]. https://www.fmprc.gov.cn. |
Ministry of Foreign Affairs. List of parties to mutual legal assistance treaties[EB/OL]. (2018-12-22) [2022-01-12]. https://www.fmprc.gov.cn. | |
[155] | CHAN J, HE S, QIAO D, et al. Shedding light on the dark: the impact of legal enforcement on darknet transactions: 19-08[R]. Washington: NET Institute, 2019. |
[156] | MIHELIČ A, MARKELJ B, BERNIK I, et al. Investiga-ting the darknet: limitations in Slovenian legal system[C]// Proceedings of the 12th International Conference on Avai-lability, Reliability and Security, Reggio Calabria, Aug 29-Sep 1, 2017. New York: ACM, 2017: 1-7. |
[157] | HENKEL T. Darknet-die dunkle Seite des Internets?[M]. Wiesbaden: Springer VS, 2020: 175-191. |
[158] | 焦康武. 总体国家安全观视域下我国暗网犯罪应对研究[J]. 犯罪研究, 2017(6): 78-89. |
JIAO K W. Research on China’s response to dark network crime from the perspective of overall national security[J]. Criminal Research, 2017(6): 78-89. |
[1] | WANG Feilong, LIU Ping, ZHANG Ling, LI Gang. Modified Algorithm of Capsule Network for Classifying Small Sample Image [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2387-2394. |
[2] | DONG Xiangxiang, GAO Ang, LIANG Ying, BI Xiaodi. Method of Privacy Preserving in Dynamic Social Network Data Publication [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1441-1458. |
[3] | ZHANG Xiaolin, HE Xiaoyu, ZHANG Huanxiang, LI Zhuolin. PLRD-(k,m):Distributed k-Degree-m-Label Anonymity with Protecting Link Rela-tionships [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(1): 70-82. |
[4] | LI Wen, HUANG Lishao, LUO Entao. Anonymous Privacy Protection Model with Individual l-Diversity in Mobile Health [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(5): 761-768. |
[5] | LI Zhoujun, ZHANG Jiangxiao, FENG Chunhui, SUI Chunrong. Survey on E-Cash Scheme [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(11): 1701-1712. |
[6] | ZHENG Luqian, HAN Jianmin, LU Jianfeng, PENG Hao, GUO Hui. (k,δ,l)-Anonymity Model to Resist Spatio-Temporal Point Linkage Attack [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(9): 1108-1121. |
[7] | HE Xianmang, CHEN Huahui, XIAO Yanghua, WANG Wei, SHI Bole. Data Privacy Preservation for Dynamic Numerical Sensitive Attributes [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(8): 740-750. |
[8] | WANG Danli1+, LIU Guohua1,2,3, SONG Jinling1,4, LI Fangling5. Problem of Finding the Optimal Value on Quasi-Identifier for k-Anonymity Model* [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(11): 1010-1018. |
[9] | LU Tianbo1+, SHI Jinqiao2, CHENG Xueqi2. A survey of anonymity on the Internet [J]. Journal of Frontiers of Computer Science and Technology, 2009, 3(1): 1-17. |
[10] | PAN Xiao+,XIAO Zhen,MENG Xiaofeng. Survey of location privacy-preserving [J]. Journal of Frontiers of Computer Science and Technology, 2007, 1(3): 268-281. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/