
Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (8): 1961-1973.DOI: 10.3778/j.issn.1673-9418.2205064
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
LIU Yu, LIU Xiaoming, LIU Weiguang, YANG Guan, LIU Jie
Online:2023-08-01
Published:2023-08-01
刘宇,刘小明,刘卫光,杨关,刘杰
LIU Yu, LIU Xiaoming, LIU Weiguang, YANG Guan, LIU Jie. Low Resource Summarization Model Based on Latent Structural Semantic En-hancement[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1961-1973.
刘宇, 刘小明, 刘卫光, 杨关, 刘杰. 基于潜层结构化语义增强的低资源摘要模型[J]. 计算机科学与探索, 2023, 17(8): 1961-1973.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2205064
| [1] LIU Y, LAPATA M. Text summarization with pretrained en-coders[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-national Joint Conference on Natural Language Processing,Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3728-3738. [2] LEWIS M, LIU Y, GOYAL N, et al. BART: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Lin-guistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 7871-7880. [3] 王红斌, 金子铃, 毛存礼. 结合层级注意力的抽取式新闻文本自动摘要[J]. 计算机科学与探索, 2022, 16(4): 877-887. WANG H B, JIN Z L, MAO C L. Extractive news text automatic summarization combined with hierarchical attention[J]. Journal of Frontiers of Computer Science and Techno-logy, 2022, 16(4): 877-887. [4] FENG S Y, GANGAL V, WEI J, et al. A survey of data aug-mentation approaches for NLP[C]//Findings of the Associa-tion for Computational Linguistics, Aug 1-6, 2021. Strouds-burg: ACL, 2021: 968-988. [5] PARIDA S, MOTLICEK P. Abstract text summarization: a low resource challenge[C]//Proceedings of the 2019 Con-ference on Empirical Methods in Natural Language Pro-cessing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019.Stroudsburg: ACL, 2019: 5993-5997. [6] 邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020. QIU X P. Neural network and deep learning[M]. Beijing: China Machine Press, 2020. [7] CHEN Y, SHUAI H. Meta-transfer learning for low-resource abstractive summarization[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intel-ligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 12692-12700. [8] 苗国义, 刘明童, 陈钰枫, 等. 融合小句对齐知识的汉英神经机器翻译[J]. 北京大学学报(自然科学版), 2022, 58(1): 61-68. MIAO G Y, LIU M T, CHEN Y F, et al. Incorporating clause alignment knowledge into Chinese-English neural machine translation[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2022, 58(1): 61-68. [9] RUSH A M, CHOPRA S, WESTON J. A neural attention model for abstractive sentence summarization[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-guage Processing, Lisbon, Sep 17-21, 2015. Stroudsburg: ACL, 2015: 379-389. [10] SHEN X, ZHAO Y, SU H, et al. Improving latent alignment in text summarization by generalizing the pointer generator[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3760-3771. [11] CHEN L, GAN Z, CHENG Y, et al. Graph optimal transport for cross-domain alignment[C]//Proceedings of the 37th In-ternational Conference on Machine Learning, Jul 13-18, 2020: 1542-1553. [12] YU T, LIU Z, FUNG P. AdaptSum: towards low-resource domain adaptation for abstractive summarization[C]//Procee-dings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Jun 6-11, 2021. Stroudsburg: ACL, 2021: 5892-5904. [13] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Advances in Neural In-formation Processing Systems 27: Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014: 3104-3112. [14] SEE A, LIU P J, MANNING C D. Get to the point: sum-marization with pointer generator networks[C]//Proceedings of the 55th Annual Meeting of the Association for Computa-tional Linguistics, Vancouver, Jul 30-Aug 4, 2017. Strouds-burg: ACL, 2017: 1073-1083. [15] TU Z, LU Z, LIU Y, et al. Modeling coverage for neural machine translation[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 1-11. [16] DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[J]. arXiv:1810.04805, 2018. [17] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pre-training[EB/OL]. [2022-02-25]. https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf. [18] CHINEA-RIOS M, PERIS A, CASACUBERTA F. Adapting neural machine translation with parallel synthetic data[C]//Proceedings of the 2nd Conference on Machine Translation, Copenhagen, Sep 7-8, 2017. Stroudsburg: ACL, 2017: 138-147. [19] HOANG V C D, KOEHN P, HAFFARI G, et al. Iterative back-translation for neural machine translation[C]//Procee-dings of the 2nd Workshop on Neural Machine Translation and Generation, Melbourne, Jul 20, 2018. Stroudsburg: ACL, 2018: 18-24. [20] HUANG L, WU L, WANG L. Knowledge graph-augmented abstractive summarization with semantic-driven cloze reward[C]//Proceedings of the 58th Annual Meeting of the Asso-ciation for Computational Linguistics, Jul 5-10, 2020. Strouds-burg: ACL, 2020: 5094-5107. [21] ZHU C, HINTHORN W, XU R, et al. Boosting factual correctness of abstractive summarization with knowledge graph[J]. arXiv:2003.08612, 2020. [22] WOLF T, DEBUT L, SANH V, et al. Transformers: state-of-the-art natural language processing[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, Nov 16-20, 2020. Strouds-burg: ACL, 2020: 38-45. [23] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M]. Cambridge: MIT Press, 2016. [24] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, Jul 31-Aug 4, 2005. Piscataway: IEEE, 2005: 729-734. [25] DUVENAUD D, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]//Advances in Neural Information Processing Systems 28: Annual Conference on Neural In-formation Processing Systems 2015, Dec 7-12, 2015: 2224-2232. [26] LI Y, GU C, DULLIEN T, et al. Graph matching networks for learning the similarity of graph structured objects[C]//Proceedings of the 36th International Conference on Ma-chine Learning, Long Beach, Jun 9-15, 2019: 3835-3845. [27] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the 6th Inter-national Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-12. [28] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Pro-cessing Systems 2017, Long Beach, Dec 4-9, 2017: 5998-6008. [29] PEYRé G, CUTURI M. Computational optimal transport[J]. Foundations and Trends in Machine Learning, 2019, 11 (5/6): 355-602. [30] PEYR E G, CUTURI M, SOLOMON J. Gromov-Wasserstein averaging of kernel and distance matrices[C]//Proceedings of the 33rd International Conference on Machine Learning,New York, Jun 19-24, 2016: 2664-2672. [31] GLIWA B, MOCHOL I, BIESEK M, et al. SAMSum corpus: a human-annotated dialogue dataset for abstractive sum-marization[C]//Proceedings of the 2nd Workshop on New Frontiers in Summarization, 2019: 70-79. [32] ZHANG R, TETREAULT J. This email could save your life: introducing the task of email subject line generation[C]//Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 446-456. [33] YASUNAGA M, KASAI J, ZHANG R, et al. ScisummNet: a large annotated corpus and content-impact models for scientific paper summarization with citation networks[C]//Proceedings of the 33rd AAAI Conference on Artificial In-telligence, the 31st Innovative Applications of Artificial In-telligence Conference, the 9th AAAI Symposium on Edu-cational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Stroudsburg: ACL, 2019: 7386-7393. [34] WANG L, LING W. Neural network-based abstract generation for opinions and arguments[C]//Proceedings of the 2016 Conference of the North American Chapter of the Associa-tion for Computational Linguistics: Human Language Tech-nologies, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 47-57. [35] KIM B, KIM H, KIM G. Abstractive summarization of reddit posts with multi-level memory networks[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 2519-2531. [36] LIN C, HOVY E. Automatic evaluation of summaries using n-gram co-occurrence statistics[C]//Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, Edmonton, May 27-Jun 1, 2003. Stroudsburg: ACL, 2003: 150-157. [37] NARAYAN S, COHEN S B, LAPATA M. Don??t give me the details, just the summary! Topic-aware convolutional neural networks for extreme summarization[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Strouds-burg: ACL, 2018: 1797-1807. [38] CHEN Y, BANSAL M. Fast abstractive summarization with reinforce-selected sentence rewriting[C]//Proceedings of the 56th Annual Meeting of the Association for Computa-tional Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 675-686. [39] FENG X, FENG X, QIN B. Incorporating commonsense knowledge into abstractive dialogue summarization via he-terogeneous graph networks[C]//LNCS 12869: Proceedings of the 20th China National Conference on Chinese Compu-tational Linguistics, Hohhot, Aug 13-15, 2021. Cham: Springer, 2021: 127-142. [40] ZHAO L, XU W, GUO J. Improving abstractive dialogue summarization with graph structures and topic words[C]//Proceedings of the 28th International Conference on Com-putational Linguistics, Barcelona, Dec 8-13, 2020: 437-449. [41] ZOU Y, ZHU B, HU X, et al. Low-resource dialogue sum-marization with domain-agnostic multi-source pretraining[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Nov 7-11, 2021. Strouds-burg: ACL, 2021: 80-91. |
| [1] | CHEN Na, HUANG Jincheng, LI Ping. Graph Neural Network Defense Combined with Contrastive Learning [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1949-1960. |
| [2] | HU Kang, XI Xuefeng, CUI Zhiming, ZHOU Yueyao, QIU Yajin. Survey of Deep Learning Table-to-Text Generation [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2487-2504. |
| [3] | GUO Fan, FAN Weiwei. Analysis and Verification on SQLIA Vulnerability for Java EE Programs [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(2): 270-283. |
| [4] | CHEN Ziyang, LIAO Jinzhi, ZHAO Xiang, CHEN Yingguo. Incorporating Subgraph Structure Knowledge Base Question Answering via Neural Reasoning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1870-1879. |
| [5] | CAO Jinchao, HUANG Tao, CHEN Gang, WU Xiaofan4, CHEN Ke. Research on Technology of Generating Multi-table SQL Query Statement by Natural Language [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1133-1141. |
| [6] | JIANG Xinlan. Rail Fastener Detection Method Based on Structured Region Full Convolution Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1888-1898. |
| [7] | TANG Shuang, ZHANG Lingxiao, ZHAO Junfeng, XIE Bing, ZOU Yanzhen. Extensible Topic Modeling and Analysis Framework for Multisource Data [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 742-752. |
| [8] | JING Cuiping, LIAO Li, WANG Wei. Programming Tool for Parallel Application with Unstructured Grids [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(2): 252-262. |
| [9] | LIU Yiliang, LIU Hong, WANG Jihua. Research on STEP 3D Instance Oriented Structured Query Method [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(6): 867-874. |
| [10] | WANG Shuo, WANG Zhongjie, YU Meng, XU Xiaofei. Method for Transforming Layered Service Process into Executable BPEL [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(7): 781-792. |
| [11] | BI Xin, WANG Guoren, ZHAO Xiangguo, YUAN Ye, ZHANG Pan. A Survey of Twig Query Processing and Optimization Techniques on XML [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(9): 769-782. |
| [12] | GONG Chunye, BAO Weimin, TANG Guojian, WANG Ling, LIU Jie, HU Qingfeng. Parallel Algorithm for CFD LU-SGS Time Stepping with Two Dimensional Structured Meshes [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(10): 916-923. |
| [13] | ZHOU Ningnan1,2, ZHANG Xiao1,2+, SUN Xinyun1,2, JU Xingxing1,2, LIU Kuicheng1,2, DU Xiaoyong1,2, WANG Shan1,2. Design and Implementation of Adaptive Storage Management System in MyBUD [J]. Journal of Frontiers of Computer Science and Technology, 2012, 6(8): 673-683. |
| [14] | LIAN Kunmei, XU Jing, TIAN Wei, ZHANG Ying. Research on SQL Injection Vulnerability Multi-level Detection Method [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(5): 474-480. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/