Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (1): 189-204.DOI: 10.3778/j.issn.1673-9418.2209056
• Artificial Intelligence·Pattern Recognition • Previous Articles Next Articles
JU Chengcheng, ZHU Yi
Online:
2024-01-01
Published:
2024-01-01
居程程,祝义
JU Chengcheng, ZHU Yi. Knowledge Concept Recommendation Model for MOOCs with Local Subgraph Embedding[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 189-204.
居程程, 祝义. 采用局部子图嵌入的MOOCs知识概念推荐模型[J]. 计算机科学与探索, 2024, 18(1): 189-204.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2209056
[1] HUANG N, ZHANG J, BURTCH G, et al. Combating pro-crastination on massive online open courses via optimal calls to action[J]. Information Systems Research, 2021, 32(2): 301-317. [2] ZHU M, SARI A, LEE M M. A systematic review of research methods and topics of the empirical MOOC literature (2014—2016)[J]. The Internet and Higher Education, 2018, 37: 31-39. [3] SEATON D T, BERGNER Y, CHUANG I, et al. Who does what in a massive open online course?[J]. Communications of the ACM, 2014, 57(4): 58-65. [4] KIZILCEC R F, PIECH C, SCHNEIDER E. Deconstructing disengagement: analyzing learner subpopulations in massive open online courses[C]//Proceedings of the 3rd International Conference on Learning Analytics and Knowledge, Leuven, Apr 8-12, 2013. New York: ACM, 2013: 170-179. [5] JACOBSEN D Y. Dropping out or dropping in? A connectivist approach to understanding participants?? strategies in an e-learning MOOC pilot[J]. Technology, Knowledge and Learning, 2019, 24(1): 1-21. [6] ADAMOPOULOS P. What makes a great MOOC? An inter-disciplinary analysis of student retention in online courses[C]//Proceedings of the 34th International Conference on Information Systems, Milano, Dec 15-18, 2013. [7] KLOFT M, STIEHLER F, ZHENG Z, et al. Predicting MOOC dropout over weeks using machine learning methods[C]// Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 60-65. [8] QIU J, TANG J, LIU T X, et al. Modeling and predicting learning behavior in MOOCs[C]//Proceedings of the 9th ACM International Conference on Web Search and Data Mining, San Francisco, Feb 22-25, 2016. New York: ACM, 2016: 93-102. [9] NAGRECHA S, DILLON J Z, CHAWLA N V. MOOC dropout prediction: lessons learned from making pipelines interpretable[C]//Proceedings of the 26th International Conference on World Wide Web Companion, Perth, Apr 3-7, 2017: 351-359. [10] CHEN Y, ZHANG M. MOOC student dropout: pattern and prevention[C]//Proceedings of the ACM Turing 50th Cele-bration Conference-China, Shanghai, May 12-14, 2017: 1-6. [11] PANG Y, JIN Y, ZHANG Y, et al. Collaborative filtering re-commendation for MOOC application[J]. Computer Appli-cations in Engineering Education, 2017, 25(1): 120-128. [12] BOUSBAHI F, CHORFI H. MOOC-Rec: a case based recom-mender system for MOOCs[J]. Procedia - Social and Behavioral Sciences, 2015, 195: 1813-1822. [13] CAMPOS R, DOS SANTOS R P, OLIVEIRA J. A recom-mendation system based on knowledge gap identification in MOOCs ecosystems[C]//Proceedings of the XVI Brazilian Symposium on Information Systems, S?o Bernardo do Campo, Nov 3-6, 2020. New York: ACM, 2020: 1-8. [14] LIU H, LI X. Learning path combination recommendation based on the learning networks[J]. Soft Computing, 2019, 24(6): 4427-4439. [15] ZHANG M, ZHU J, WANG Z, et al. Providing personalized learning guidance in MOOCs by multi-source data analysis[J]. World Wide Web, 2018, 22(3): 1189-1219. [16] LI J, YE Z. Course recommendations in online education based on collaborative filtering recommendation algorithm[J]. Complexity, 2020: 6619249. [17] GONG J, WANG S, WANG J, et al. Attentional graph con-volutional networks for knowledge concept recommendation in MOOCs in a heterogeneous view[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 79-88. [18] GONG J, WANG C, ZHAO Z, et al. Automatic generation of meta-path graph for concept recommendation in MOOCs[J]. Electronics, 2021, 10(14): 1671. [19] PIAO G. Recommending knowledge concepts on MOOC platforms with meta-path-based representation learning[C]// Proceedings of the 14th International Conference on Edu-cational Data Mining, Jun 29-Jul 2, 2021. [20] GARG V, TIWARI R. Hybrid massive open online course (MOOC) recommendation system using machine learning[C]//Proceedings of the 2016 International Conference on Recent Trends in Engineering, Science & Technology, Hydera-bad, Oct 25-27, 2016: 1-5. [21] FU D, LIU Q, ZHANG S, et al. The undergraduate-oriented framework of MOOCs recommender system[C]//Proceedings of the 2015 International Symposium on Educational Technology, Wuhan, Jul 27-29, 2015. Piscataway: IEEE, 2015: 115-119. [22] CHAO D, KAILI L, JING Z, et al. Collaborative filtering recommendation algorithm classification and comparative study[C]//Proceedings of the 2019 4th International Con-ference on Distance Education and Learning, Shanghai, May 24-27, 2019. New York: ACM, 2019: 106-111. [23] ELBADRAWY A, KARYPIS G. Domain-aware grade prediction and top-n course recommendation[C]//Proceedings of the 10th ACM Conference on Recommender Systems, Boston, Sep 15-19, 2016. New York: ACM, 2016: 183-190. [24] YANG D, PIERGALLINI M, HOWLEY I, et al. Forum thread recommendation for massive open online courses[C]// Proceedings of the 7th International Conference on Educa-tional Data Mining, London, Jul 4-7, 2014: 257-260. [25] ADAMOPOULOS P. On discovering non-obvious recommen-dations: using unexpectedness and neighborhood selection methods in collaborative filtering systems[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. New York: ACM, 2014: 655-660. [26] SYMEONIDIS P, MALAKOUDIS D. MoocRec.com: massive open online courses recommender system[C]//Proceedings of the Poster Track of the 10th ACM Conference on Recom-mender Systems, Boston, Sep 17, 2016. [27] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [28] GAO H, WANG Z, JI S. Large-scale learnable graph convo-lutional networks[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1416-1424. [29] WANG X, JI H, SHI C, et al. Heterogeneous graph atten-tion network[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2022-2032. [30] SHI C, HU B, ZHAO W X, et al. Heterogeneous information network embedding for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 31(2): 357-370. [31] YU J, LUO G, XIAO T, et al. MOOCCube: a large-scale data repository for NLP applications in MOOCs[C]//Pro-ceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Jul 5-10, 2020. Stroudsburg: ACL, 2020: 3135-3142. [32] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013. [33] YING R, HE R, CHEN K, et al. Graph convolutional neural networks for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 974-983. [34] PAL A, EKSOMBATCHAI C, ZHOU Y, et al. Pinnersage: multi-modal user embedding framework for recommendations at pinterest[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 2311-2320. [35] DONG Y, CHAWLA N V, SWAMI A. Metapath2vec: scalable representation learning for heterogeneous networks[C]//Pro-ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 135-144. [36] WANG S, CHEN Z, LI D, et al. Attentional heterogeneous graph neural network: application to program reidentification[C]//Proceedings of the 2019 SIAM International Conference on Data Mining, Calgary, May 2-4, 2019. Philadelphia: SIAM, 2019: 693-701. [37] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, Montreal, Jul 31-Aug 4, 2005. Piscataway: IEEE, 2005: 729-734. [38] ZHAO Z, ZHANG X, ZHOU H, et al. HetNERec: hetero-geneous network embedding based recommendation[J]. Know-ledge-Based Systems, 2020, 204: 106218. [39] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 639-648. [40] CHEN T, SUN Y. Task-guided and path-augmented hetero-geneous network embedding for author identification[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, Feb 6-10, 2017. New York: ACM, 2017: 295-304. [41] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864. [42] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Montreal, Jun 18-21, 2009. New York: ACM, 2009: 452-461. [43] WANG X, HE X, WANG M, et al. Neural graph collabora-tive filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Infor-mation Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 165-174. [44] MAO K, ZHU J, XIAO X, et al. UltraGCN: ultra simplifi-cation of graph convolutional networks for recommendation[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021: 1253-1262. [45] WANG M, ZHENG D, YE Z, et al. Deep graph library: a graph-centric, highly-performant package for graph neural networks[J]. arXiv:1909.01315, 2019. |
[1] | GU Junhua, LI Ningning, WANG Xinxin, ZHANG Suqi. Integrating Behavioral Dependencies into Multi-task Learning for Personalized Recommendations [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 231-243. |
[2] | ZHANG Wenxuan, YIN Yanjun, ZHI Min. Affection Enhanced Dual Graph Convolution Network for Aspect Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 217-230. |
[3] | CUI Huanqing, SONG Weiqing, YANG Junzhu. Knowledge Ripple Graph Convolutional Network for Recommendation [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2209-2218. |
[4] | LIU Chao, LIANG Anting, LIU Xiaoyang, HUANG Xianying. Social Network Nodes Classification Method Based on Multi-information Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2198-2208. |
[5] | CAO Yingli, DENG Zhaohong, HU Shudong, WANG Shitong. Classification of Alzheimer's Disease Integrating Individual Feature and Fusion Feature [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1658-1668. |
[6] | MENG Tiantian, HAN Hu, WU Yuanhang. Joint Modeling Based on Multi-task Learning for Aspect Term Extraction and Sen-timent Classification [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(7): 1669-1679. |
[7] | XUE Yanming, LI Guanghui, QI Tao. Traffic Prediction Method Integrating Graph Wavelet and Attention Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1405-1416. |
[8] | ZHU Ji, XIAO Xiaoli, YIN Bo, SUN Qian, TAN Dong. Bilinear Diffusion Graph Recommendation Model Fusing User Social Relations [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 826-836. |
[9] | WANG Haobai, SHEN Xin, HUANG Weijian, CHEN Kejia. Protein-HVGAE: Protein Encoding Method in Hyperbolic Space [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 701-708. |
[10] | ZHAO Dengge, ZHI Min. Spatial Multiple-Temporal Graph Convolutional Neural Network for Human Action Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 719-732. |
[11] | HAN Hu, HAO Jun, ZHANG Qiankun, MENG Tiantian. Knowledge-Enhanced Interactive Attention Model for Aspect-Based Sentiment Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 709-718. |
[12] | FU Kun, ZHUO Jiaming, GUO Yunpeng, LI Jianing, LIU Qi. Graph Convolutional Network with Adaptive Fusion of Neighborhood Aggregation and Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 453-466. |
[13] | GOU Ruru, YANG Wenzhu, LUO Zifei, YUAN Yunfeng. Multiscale Global Adaptive Attention Graph Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 3039-3051. |
[14] | GU Yuying, GAO Meifeng. Aspect-Level Sentiment Analysis Combining Part-of-Speech and External Knowledge [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2488-2498. |
[15] | FEI Ke, QIN Xiaolin, CHI Heyu, LI Tang. GCN Deep Search Method for Optimal Path of Dynamic Road Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 116-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/