Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (10): 2300-2324.DOI: 10.3778/j.issn.1673-9418.2211087
• Frontiers·Surveys • Previous Articles Next Articles
LIU Hualing, CAO Shijie, XU Junyi, CHEN Shanghui
Online:
2023-10-01
Published:
2023-10-01
刘华玲,曹世杰,许珺怡,陈尚辉
LIU Hualing, CAO Shijie, XU Junyi, CHEN Shanghui. Anti-fraud Research Advances on Digital Credit Payment[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2300-2324.
刘华玲, 曹世杰, 许珺怡, 陈尚辉. 数字信用交易反欺诈研究进展[J]. 计算机科学与探索, 2023, 17(10): 2300-2324.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2211087
[1] 周子衡. 数字经济发展三阶段: 数字支付、数字法币与数字财政[J]. 清华金融评论, 2018(4): 63-64. ZHOU Z H. Three stages of digital economy development: digital payment, digital legal currency and digital finance[J]. Tsinghua Financial Review, 2018(4): 63-64. [2] BANSAL A, GARG H. An efficient techniques for fraudulent detection in credit card dataset: a comprehensive study[J].IOP Conference Series: Materials Science and Engineering, 2021, 1116(1): 012181. [3] 中国人民银行支付结算司. 2020年支付体系运行总体情况[J]. 金融会计, 2021(4): 77-80. Payment and Settlement Department of the People’s Bank of China. The overall operation of the payment system in 2020[J]. Financial Accounting, 2021(4): 77-80. [4] POPAT R R, CHAUDHARY J. A survey on credit card fraud detection using machine learning[C]//Proceedings of the 2018 2nd International Conference on Trends in Elec-tronics and Informatics, Tirunelveli, May 11-12, 2018. Piscataway: IEEE, 2018: 1120-1125. [5] NIU X, WANG L, YANG X. A comparison study of credit card fraud detection: supervised versus unsupervised[J]. arXiv:1904.10604, 2019. [6] MOHARI A, DOWERAH J, DAS K, et al. Credit card fraud detection techniques: a review[J]. Soft Computing for Intelligent Systems, 2021: 157-166. [7] RYMAN-TUBB N F, KRAUSE P, GARN W. How artificial intelligence and machine learning research impacts payment card fraud detection: a survey and industry benchmark[J]. Engineering Applications of Artificial Intelligence, 2018, 76: 130-157. [8] PANDEY K, SACHAN P, GANPATRAO N G. A review of credit card fraud detection techniques[C]//Proceedings of the 2021 5th International Conference on Computing Methodologies and Communication, Erode, Apr 8-10, 2021. Piscataway: IEEE, 2021: 1645-1653. [9] AL-HASHEDI K G, MAGALINGAM P. Financial fraud detection applying data mining techniques: a comprehensive review from 2009 to 2019[J]. Computer Science Review, 2021, 40: 100402. [10] 张远. 我国商业银行信用卡风险及其防范探析[J]. 征信,2020, 38(11): 87-92. ZHANG Y. Analysis of credit card risks of commercial banks and their prevention in China[J]. Credit Reference, 2020, 38(11): 87-92. [11] TAHA A A, MALEBARY S J. An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine[J]. IEEE Access, 2020, 8: 25579-25587. [12] 巴曙松, 侯畅, 唐时达. 大数据风控的现状, 问题及优化路径[J]. 金融理论与实践, 2016(2): 23-26. BA S S, HOU C, TANG S D. Current situation, problems and optimization of the big data risk control[J]. Financial Theory & Practice, 2016(2): 23-26. [13] CZARNECKI W M, RATAJ K. Compounds activity predic-tion in large imbalanced datasets with substructural relations fingerprint and EEM[C]//Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, Helsinki, Aug 20-22, 2015. Piscat-away: IEEE, 2015: 192. [14] WEI W, LI J, CAO L, et al. Effective detection of sophisticated online banking fraud on extremely imbalanced data[J]. World Wide Web, 2013, 16(4): 449-475. [15] CHAWLA N V, JAPKOWICZ N, KOTCZ A. Special issue on learning from imbalanced data sets[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 1-6. [16] ZHANG X, HAN Y, XU W, et al. HOBA: a novel feature engineering methodology for credit card fraud detection with a deep learning architecture[J]. Information Sciences, 2021, 557: 302-316. [17] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864. [18] WANG D, CUI P, ZHU W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1225-1234. [19] VAN VLASSELAER V, BRAVO C, CAELEN O, et al. APATE: a novel approach for automated credit card transaction fraud detection using network-based extensions[J]. Decision Support Systems, 2015, 75: 38-48. [20] 王成, 王昌琪. 一种面向网络支付反欺诈的自动化特征工程方法[J]. 计算机学报, 2020, 43(10): 1983-2001. WANG C, WANG C Q. An automated feature engineering method for online payment fraud detection[J]. Chinese Journal of Computers, 2020, 43(10): 1983-2001. [21] HAMILTON W, YING Z, LESKOVEC J. Inductive represen- tation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 1024-1034. [22] ZHANG L, ZHANG D. Evolutionary cost-sensitive extreme learning machine[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 28(12): 3045-3060. [23] NAMI S, SHAJARI M. Cost-sensitive payment card fraud detection based on dynamic random forest and k-nearest neighbors[J]. Expert Systems with Applications, 2018, 110: 381-392. [24] KHAN S, HAYAT M, BENNAMOUN M, et al. Cost-sensitive learning of deep feature representations from imbalanced data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(8): 3573-3587. [25] CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [26] HE H, BAI Y, GARCIA E A, et al. ADASYN: adaptive synthetic sampling approach for imbalanced learning[C]//Proceedings of the 2008 International Joint Conference on Neural Networks, Part of the IEEE World Congress on Com- putational Intelligence, Hong Kong, China, Jun 1-6, 2008. Piscataway: IEEE, 2008: 1322-1328. [27] BAABDULLAH T, ALZAHRANI A, RAWAT D B. On the comparative study of prediction accuracy for credit card fraud detection with imbalanced classifications[C]//Proceedings of the 2020 Spring Simulation Conference, Fairfax, May 18-21, 2020. Piscataway: IEEE, 2020: 1-12. [28] ZHANG Z, HUANG S. Credit card fraud detection via deep learning method using data balance tools[C]//Proceedings of the 2020 International Conference on Computer Science and Management Technology, Shanghai, Nov 20-22, 2020. Piscataway: IEEE, 2020: 133-137. [29] BATISTA G E, PRATI R C, MONARD M C. A study of the behavior of several methods for balancing machine learning training data[J]. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 20-29. [30] HAN H, WANG W Y, MAO B H. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning[C]//LNCS 3644: Proceedings of the 2005 International Conference on Intelligent Computing, Hefei, Aug 23-26, 2005. Berlin, Heidelberg: Springer, 2005: 878-887. [31] BUNKHUMPORNPAT C, SINAPIROMSARAN K, LUR-SINSAP C. Safe-Level-SMOTE: safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem[C]//LNCS 5476: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Thailand, Apr 23-30, 2009. Berlin, Heidelberg: Springer, 2009: 475-482. [32] MACIEJEWSKI T, STEFANOWSKI J. Local neighbourhood extension of SMOTE for mining imbalanced data[C]//Proceedings of the 2011 IEEE Symposium on Compu-tational Intelligence and Data Mining, Paris, Apr 11-15, 2011. Piscataway: IEEE, 2011: 104-111. [33] NAPIERALA K, STEFANOWSKI J. Types of minority class examples and their influence on learning classifiers from imbalanced data[J]. Journal of Intelligent Information Systems, 2016, 46(3): 563-597. [34] 王芳, 吴文通, 张立立, 等. 邻域自适应SMOTE算法研究[J]. 计算机应用研究, 2021, 38(6): 1673-1677. WANG F, WU W T, ZHANG L L, et al. Research on neighborhood adaptive SMOTE algorithm[J]. Application Research of Computers, 2021, 38(6): 1673-1677. [35] 梅大成, 陈江, 郑涛. 边界与密度适应的SMOTE算法研究[J]. 计算机应用研究, 2022, 39(5): 1478-1482. MEI D C, CHEN J, ZHENG T. Research on SMOTE algorithm based on boundary and density adaptation[J]. Application Research of Computers, 2022, 39(5): 1478-1482. [36] 张忠良, 陈愉予, 唐佳怡, 等. 一种基于高斯过采样的集成学习算法[J]. 系统工程理论与实践, 2021, 41(2): 513-523. ZHANG Z L, CHEN Y Y, TANG J Y, et al. An ensemble learning algorithm with Gaussian-based oversampling[J]. Systems Engineering-Theory & Practice, 2021, 41(2): 513-523. [37] OMAR B, RUSTAM F, MEHMOOD A, et al. Minimizing the overlapping degree to improve class-imbalanced learning under sparse feature selection: application to fraud detection[J]. IEEE Access, 2021, 9: 28101-28110. [38] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Infor-mation Processing Systems 27, Montreal, Dec 8-13, 2014: 2672-2680. [39] FIORE U, DE S A, PERLA F, et al. Using generative adversarial networks for improving classification effectiveness in credit card fraud detection[J]. Information Sciences, 2019, 479: 448-455. [40] 赵海霞, 石洪波, 武建, 等. 基于条件生成对抗网络的不平衡学习研究[J]. 控制与决策, 2021, 36(3): 619-628. ZHAO H X, SHI H B, WU J, et al. Research on imbalanced learning based on conditional generative adversarial networks[J]. Control and Decision, 2021, 36(3): 619-628. [41] XU W, LIU Y. An optimized SVM model for detection of fraudulent online credit card transactions[C]//Proceedings of the 2012 International Conference on Management of e-Commerce and e-Government, Beijing, Oct 20-21, 2012. Piscataway: IEEE, 2012: 14-17. [42] MAREESWARI V, GUNASEKARAN G. Prevention of credit card fraud detection based on HSVM[C]//Proceedings of the 2016 International Conference on Information Com-munication and Embedded Systems, India, Feb 25-26, 2016. Piscataway: IEEE, 2016: 1-4. [43] GYAMFI N K, ABDULAI J D. Bank fraud detection using support vector machine[C]//Proceedings of the 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference, Vancouver, Nov 1-3, 2018. Piscataway: IEEE, 2018: 37-41. [44] ITOO F, SINGH S. Comparison and analysis of logistic regression, Na?ve Bayes and KNN machine learning algorithms for credit card fraud detection[J]. International Journal of Information Technology, 2021, 13(4): 1503-1511. [45] ZHANG A, LIPTON Z C, LI M, et al. Dive into deep learning[J]. arXiv:2106.11342, 2021. [46] RANDHAWA K, LOO C K, SEERA M, et al. Credit card fraud detection using AdaBoost and majority voting[J]. IEEE Access, 2018, 6: 14277-14284. [47] GHOBADI F, ROHANI M. Cost sensitive modeling of credit card fraud using neural network strategy[C]//Pro-ceedings of the 2016 2nd International Conference of Signal Processing and Intelligent Systems, Tehran, Dec 14-15, 2016. Piscataway: IEEE, 2016: 1-5. [48] 杨莲, 石宝峰. 基于Focal Loss修正交叉熵损失函数的信用风险评价模型及实证[J]. 中国管理科学, 2022, 30(5): 65-75. YANG L, YANG B F. Credit risk evaluation model and empirical research based on focal loss modified cross-entropy loss function[J]. Chinese Journal of Management Science, 2022, 30(5): 65-75. [49] 张军阳, 王慧丽, 郭阳, 等. 深度学习相关研究综述[J]. 计算机应用研究, 2018, 35(7): 1921-1928. ZHANG J Y, WANG H L, GUO Y, et al. Review of deep learning[J]. Application Research of Computers, 2018, 35(7): 1921-1928. [50] 肖京, 王磊, 杨余久, 等. 感知认知技术在金融风险预警中的应用研究[J]. 智能系统学报, 2021, 16(5): 941-961. XIAO J, WANG L, YANG Y J, et al. A systematic review of perceptual cognitive technology and its application in the field of financial risk early warning[J]. CAAI Transactions on Intelligent Systems, 2021, 16(5): 941-961. [51] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. [52] CHO K, VAN Z B, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[J]. arXiv:1409.1259, 2014. [53] OWOLAFE O, OGUNRINDE O B, THOMPSON A F B. A long short term memory model for credit card fraud detection[M]//Artificial Intelligence for Cyber Security: Methods, Issues and Possible Horizons or Opportunities. Cham: Springer, 2021: 369-391. [54] ROY A, SUN J, MAHONEY R, et al. Deep learning detecting fraud in credit card transactions[C]//Proceedings of the 2018 Systems and Information Engineering Design Symposium, Charlottesville, Apr 27, 2018. Piscataway: IEEE, 2018: 129-134. [55] BENCHAJI I, DOUZI S, EL OUAHIDI B, et al. Enhanced credit card fraud detection based on attention mechanism and LSTM deep model[J]. Journal of Big Data, 2021, 8(1): 1-21. [56] 刘颖, 杨轲. 基于深度集成学习的类极度不均衡数据信用欺诈检测算法[J]. 计算机研究与发展, 2021, 58(3): 539-547. LIU Y, YANG K. Credit fraud detection for extremely imbalanced data based on ensembled deep learning[J]. Journal of Computer Research and Development, 2021, 58(3): 539-547. [57] FOROUGH J, MOMTAZI S. Ensemble of deep sequential models for credit card fraud detection[J]. Applied Soft Computing, 2021, 99: 106883. [58] EL BOUCHTI A, CHAKROUN A, ABBAR H, et al. Fraud detection in banking using deep reinforcement learning[C]//Proceedings of the 2017 7th International Conference on Innovative Computing Technology, Luton, Aug 16-18, 2017. Piscataway: IEEE, 2017: 58-63. [59] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. [60] MALINI N, PUSHPA M. Analysis on credit card fraud identification techniques based on KNN and outlier detection[C]//Proceedings of the 2017 3rd International Conference on Advances in Electrical, Electronics, Information, Com-munication and Bio-Informatics, Chennai, Feb 27-28, 2017. Piscataway: IEEE, 2017: 255-258. [61] AWOYEMI J O, ADETUNMBI A O, OLUWADARE S A. Credit card fraud detection using machine learning techniques: a comparative analysis[C]//Proceedings of the 2017 Inter-national Conference on Computing Networking and Infor-matics, Lagos, Oct 29-31, 2017. Piscataway: IEEE, 2017: 1-9. [62] DIGHE D, PATIL S, KOKATE S. Detection of credit card fraud transactions using machine learning algorithms and neural networks: a comparative study[C]//Proceedings of the 2018 4th International Conference on Computing Com- munication Control and Automation, Pune, Aug 16-18, 2018. Piscataway: IEEE, 2018: 1-6. [63] ?Z?ELIK M H, DUMAN E, I?IK M, et al. Improving a credit card fraud detection system using genetic algorithm[C]//Proceedings of the 2010 International Conference on Networking and Information Technology, Manila, Jun 11-12, 2010. Piscataway: IEEE, 2010: 436-440. [64] OLABODE A O. Performance evaluation of genetic algorithm and counter propagation neural network for anomaly detection in online transaction[J]. Annals. Computer Science Series, 2019, 17(2). [65] ALOTAIBI A, ALQHTANI M, ALZAIDI A, et al. Identifying credit card fraud using genetic and clonal selection algorithms[J]. International Journal of Innovative Science, Engineering & Technology, 2019, 6(12). [66] BRABAZON A, CAHILL J, KEENAN P, et al. Identifying online credit card fraud using artificial immune systems[C]//Proceedings of the 2010 IEEE Congress on Evolutionary Computation, Barcelona, Jul 18-23, 2010. Piscataway: IEEE, 2010: 1-7. [67] BENCHAJI I, DOUZI S, EL O B. Using genetic algorithm to improve classification of imbalanced datasets for credit card fraud detection[C]//Proceedings of the 2018 International Conference on Advanced Information Technology, Services and Systems, Mohammedia, Oct 17-18, 2018. Cham: Springer, 2018: 220-229. [68] KHO J R D, VEA L A. Credit card fraud detection based on transaction behavior[C]//Proceedings of the TENCON 2017— 2017 IEEE Region 10 Conference, Penang, Nov 5-8, 2017. Piscataway: IEEE, 2017: 1880-884. [69] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. [70] ZAREAPOOR M, SHAMSOLMOALI P. Application of credit card fraud detection: based on bagging ensemble classifier[J]. Procedia Computer Science, 2015, 48: 679-685. [71] XUAN S, LIU G, LI Z, et al. Random forest for credit card fraud detection[C]//Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control, Zhuhai, Mar 27-29, 2018. Piscataway: IEEE, 2018: 1-6. [72] CHEN T, GUESTRIN C. Xgboost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD Inter-national Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 785-794. [73] KE G, MENG Q, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 3146-3154. [74] 陈荣荣, 詹国华, 李志华. 基于XGBoost算法模型的信用卡交易欺诈预测研究[J]. 计算机应用研究, 2020, 37(S1):111-112. CHEN R R, ZHAN G H, LI Z H. Research on credit card transaction fraud prediction based on XGBoost algorithm model[J]. Application Research of Computers, 2020, 37(S1): 111-112. [75] 张涛, 汪御寒, 李凯, 等. 基于样本依赖代价矩阵的小微企业信用评估方法[J]. 同济大学学报(自然科学版), 2020, 48(1): 149-158. ZHANG T, WANG Y H, LI K, et al. Credit scoring of small and micro enterprises based on sample-dependent cost matrix[J]. Journal of Tongji University (Natural Science), 2020, 48(1): 149-158. [76] 陈芮, 杨新, 罗珺方, 等. 基于GANs-LightGBM的序贯三支异常用户检测研究[J]. 重庆邮电大学学报(自然科学版), 2021, 33(5): 816-825. CHEN R, YANG X, LUO J F, et al. Research on sequential three-way abnormal user detection based on GANs-LightGBM[J]. Journal of Chongqing University of Posts and Telecom-munications (Natural Science Edition), 2021, 33(5): 816-825. [77] KHAN A, SINGH T, SINHAL A. Implement credit card fraudulent detection system using observation probabilistic in hidden Markov model[C]//Proceedings of the 2012 Nirma University International Conference on Engineering, Ahmedabad, Dec 6-8, 2012. Piscataway: IEEE, 2012: 1-6. [78] BHUSARI V, PATIL S. Study of hidden Markov model in credit card fraudulent detection[C]//Proceedings of the 2016 World Conference on Futuristic Trends in Research and Innovation for Social Welfare, Coimbatore, Feb 29-Mar 1, 2016. Piscataway: IEEE, 2016: 1-4. [79] WANG X, WU H, YI Z. Research on bank anti-fraud model based on K-means and hidden Markov model[C]//Proceedings of the 2018 IEEE 3rd International Conference on Image, Vision and Computing, Chongqing, Jun 27-29, 2018. Piscataway: IEEE, 2018: 780-784. [80] 张树森, 梁循, 齐金山. 社会网络角色识别方法综述[J]. 计算机学报, 2017, 40(3): 649-673. ZHANG S S, LIANG X, QI J S. A review on role identification methods in social networks[J]. Chinese Journal of Computers, 2017, 40(3): 649-673. [81] YANG Y, XU Y, WANG C, et al. Understanding default behavior in online lending[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 2043-2052. [82] 金利娜, 于炯, 杜旭升, 等. 基于生成对抗网络和变分自编码器的离群点检测算法[J]. 计算机应用研究, 2022, 39(3): 774-779. JIN L N, YU J, DU X S, et al. Generative adversarial network and variational auto-encoder based outlier detection[J]. Application Research of Computers, 2022, 39(3): 774-779. [83] RAI A K, DWIVEDI R K. Fraud detection in credit card data using unsupervised machine learning based scheme[C]//Proceedings of the 2020 International Conference on Electronics and Sustainable Communication Systems, Coim- batore, Jul 2-4, 2020. Piscataway: IEEE, 2020: 421-426. [84] ZHENG M, ZHOU C, WU J, et al. FraudNE: a joint embedding approach for fraud detection[C]//Proceedings of the 2018 International Joint Conference on Neural Networks, Rio de Janeiro, Jul 8-13, 2018. Piscataway: IEEE, 2018: 1-8. [85] PUMSIRIRAT A, YAN L. Credit card fraud detection using deep learning based on auto-encoder and restricted Boltzmann machine[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(1): 18-25. [86] SELIYA N, ABDOLLAH ZADEH A, KHOSHGOFTAAR T M. A literature review on one-class classification and its potential applications in big data[J]. Journal of Big Data, 2021, 8(1): 1-31. [87] JERAGH M, ALSULAIMI M. Combining auto encoders and one class support vectors machine for fraudulant credit card transactions detection[C]//Proceedings of the 2018 2nd World Conference on Smart Trends in Systems, Security and Sustainability, London, Oct 30-31, 2018. Piscataway: IEEE, 2018: 178-184. [88] KHAN S S, TAATI B. Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders[J]. Expert Systems with Applications, 2017, 87: 280-290. [89] ZHENG P, YUAN S, WU X, et al. One-class adversarial nets for fraud detection[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park:AAAI, 2019: 1286-1293. [90] LEBICHOT B, BRAUN F, CAELEN O, et al. A graph-based, semi-supervised, credit card fraud detection system[C]//Proceedings of the 2017 International Workshop on Complex Networks and Their Applications. Cham: Springer, 2017: 721-733. [91] SALAZAR A, SAFONT G, VERGARA L. Semi-supervised learning for imbalanced classification of credit card transaction[C]//Proceedings of the 2018 International Joint Conference on Neural Networks, Rio de Janeiro, Jul 8-13, 2018. Piscataway: IEEE, 2018: 1-7. [92] XIAO J, ZHOU X, ZHONG Y, et al. Cost-sensitive semi-supervised selective ensemble model for customer credit scoring[J]. Knowledge-Based Systems, 2020, 189: 105-118. [93] CHARITOU C, GARCEZ A A, DRAGICEVIC S. Semi-supervised GANs for fraud detection[C]//Proceedings of the 2020 International Joint Conference on Neural Networks, Glasgow, Jul 19-24, 2020. Piscataway: IEEE, 2020: 1-8. [94] LEBICHOT B, VERHELST T, LE BORGNE Y A, et al. Transfer learning strategies for credit card fraud detection[J]. IEEE Access, 2021, 9: 114754-114766. [95] ELSAYED G F, GOODFELLOW I, SOHL-DICKSTEIN J. Adversarial reprogramming of neural networks[J]. arXiv:1806.11146, 2018. [96] CHEN L, FAN Y, YE Y. Adversarial reprogramming of pretrained neural networks for fraud detection[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Queensland, Nov 1-5, 2021. New York: ACM, 2021: 2935-2939. [97] 吴俊杰, 刘冠男, 王静远, 等. 数据智能: 趋势与挑战[J]. 系统工程理论与实践, 2020, 40(8): 2116-2149. WU J J, LIU G N, WANG J Y, et al. Data intelligence: trends and challenges[J]. Systems Engineering-Theory & Practice, 2020, 40(8): 2116-2149. [98] RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?” Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1135-1144. [99] BINDER A, BACH S, MONTAVON G, et al. Layer-wise relevance propagation for deep neural network architectures[C]//Proceedings of the 2016 International Conference on Information Science and Applications. Cham: Springer, 2016: 913-922. [100] WU T, WANG Y. Locally Interpretable one-class anomaly detection for credit card fraud detection[J]. arXiv:2108. 02501, 2021. [101] 董路安, 叶鑫. 基于改进教学式方法的可解释信用风险评价模型构建[J]. 中国管理科学, 2020, 28(9): 45-53. DONG L A, YE X. Interpretable credit risk assessment modeling based on improved pedagogical method[J]. Chinese Journal of Management Science, 2020, 28(9): 45-53. [102] CARCILLO F, LE BORGNE Y A, CAELEN O, et al. Combining unsupervised and supervised learning in credit card fraud detection[J]. Information Sciences, 2021, 557: 317-331. [103] MICENKOVá B, MCWILLIAMS B, ASSENT I. Learning outlier ensembles: the best of both worlds—supervised and unsupervised[C]//Proceedings of the ACM SIGKDD 2014 Workshop on Outlier Detection and Description under Data Diversity, New York, Aug 24, 2014. New York: ACM, 2014: 51-54. [104] KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and open problems in federated learning[J]. Foundations and Trends? in Machine Learning, 2021, 14(1/2). [105] 郭艳卿, 王鑫磊, 付海燕, 等. 面向隐私安全的联邦决策树算法[J]. 计算机学报, 2021, 44(10): 2090-2103. GUO Y Q, WANG X L, FU H Y, et al. Federated decision tree algorithm for privacy security[J]. Chinese Journal of Computers, 2021, 44(10): 2090-2103. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/