Journal of Frontiers of Computer Science and Technology ›› 2024, Vol. 18 ›› Issue (5): 1197-1210.DOI: 10.3778/j.issn.1673-9418.2308044
• Frontiers·Surveys • Previous Articles Next Articles
MAO Qian, XIE Weicheng, QIAO Yitian, HUANG Xiaolong, DONG Gang
Online:
2024-05-01
Published:
2024-04-29
毛骞,谢维成,乔逸天,黄小龙,董刚
MAO Qian, XIE Weicheng, QIAO Yitian, HUANG Xiaolong, DONG Gang. Survey on Solving Cold Start Problem in Recommendation Systems[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(5): 1197-1210.
毛骞, 谢维成, 乔逸天, 黄小龙, 董刚. 推荐系统冷启动问题解决方法研究综述[J]. 计算机科学与探索, 2024, 18(5): 1197-1210.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2308044
[1] CAMACHO L A G, ALVES-SOUZA S N. Social network data to alleviate cold-start in recommender system: a systematic review[J]. Information Processing & Management, 2018, 54(4): 529-544. [2] DAFALLA A, WEI L, LIAO Z, et al. Effects of clamping pressure on cold start behavior of polymer electrolyte fuel cells[J]. Fuel Cells, 2019, 19(3): 221-230. [3] 于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J]. 计算机应用, 2022, 42(6): 1898-1913. YU M, HE W T, ZHOU X C, et al. Review of recommendation system[J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. [4] WEI J, HE J, CHEN K, et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert Systems with Applications, 2017, 69: 29-39. [5] JEEVAMOL J, RENUMOL V. An ontology-based hybrid e-learning content recommender system for alleviating the cold-start problem[J]. Education and Information Technologies, 2021, 26: 4993-5022. [6] ANWAAR F, ILTAF N, AFZAL H, et al. HRS-CE: a hybrid framework to integrate content embeddings in recommender systems for cold start items[J]. Journal of Computational Science, 2018, 29: 9-18. [7] ZHANG Y, SHI Z, ZUO W, et al. Joint personalized Markov chains with social network embedding for cold-start recommendation[J]. Neurocomputing, 2020, 386: 208-220. [8] ZHANG Z, ZHANG Y, REN Y. Employing neighborhood reduction for alleviating sparsity and cold start problems in user-based collaborative filtering[J]. Information Retrieval Journal, 2020, 23: 449-472. [9] 范永全, 杜亚军, 成丽静, 等. 一种融合用户偏好与信任度的增强协同过滤推荐方法[J]. 西华大学学报(自然科学版), 2015, 34(4): 8-12. FAN Y Q, DU Y J, CHENG L J, et al. An improved collaborative filtering recommendation method with user trust-preference fusion[J]. Journal of Xihua University (Natural Science) , 2015, 34(4): 8-12. [10] XUE F, HE X, WANG X, et al. Deep item-based collaborative filtering for top-n recommendation[J]. ACM Transactions on Information Systems, 2019, 37(3): 1-25. [11] HU J, LIU L, ZHANG C, et al. Hybrid recommendation algorithm based on latent factor model and PersonalRank[J]. Journal of Internet Technology, 2018, 19(3): 919-926. [12] FENG J, XIA Z, FENG X, et al. RBPR: a hybrid model for the new user cold start problem in recommender systems [J]. Knowledge-Based Systems, 2021, 214: 106732. [13] 于旭, 何亚东, 杜军威, 等. 一种结合显式特征和隐式特征的开发者混合推荐算法[J]. 软件学报, 2022, 33(5): 1635-1651. YU X, HE Y D, DU J W, et al. Developer hybrid recommendation algorithm based on combination of explicit features and implicit features[J]. Journal of Software, 2022, 33(5): 1635-1651. [14] HERCE-ZELAYA J, PORCEL C, TEJEDA-LORENTE á, et al. Introducing CSP dataset: a dataset optimized for the study of the cold start problem in recommender systems [J]. Information, 2022, 14(1): 19. [15] MU R, ZENG X. Auxiliary stacked denoising autoencoder based collaborative filtering recommendation[J]. KSII Tran-sactions on Internet and Information Systems, 2020, 14(6): 2310-2332. [16] RAIGOZA J, KARANDE V. A study and implementation of a movie recommendation system in a cloud-based environment[J]. International Journal of Grid and High Performance Computing, 2017, 9(1): 25-36. [17] LIKA B, KOLOMVATSOS K, HADJIEFTHYMIADES S. Facing the cold start problem in recommender systems[J]. Expert Systems with Applications, 2014, 41(4): 2065-2073. [18] XU C. A novel recommendation method based on social network using matrix factorization technique[J]. Information Processing & Management, 2018, 54(3): 463-474. [19] LI B. Cross-domain collaborative filtering: a brief survey[C]//Proceedings of the 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence. Washington:IEEE Computer Society, 2011: 1085-1086. [20] 任豪, 刘柏嵩, 孙金杨. 面向知识迁移的跨领域推荐算法研究进展[J]. 计算机科学与探索, 2020, 14(11): 1813-1827. REN H, LIU B S, SUN J Y. Advances and perspectives on knowledge transfer based cross-domain recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1813-1827. [21] WANG X, PENG Z, WANG S, et al. CDLFM: cross-domain recommendation for cold-start users via latent feature map-ping[J]. Knowledge and Information Systems, 2020, 62: 1723-1750. [22] CAO J, SHENG J, CONG X, et al. Cross-domain recommendation to cold-start users via variational information bottleneck[C]//Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022: 2209-2223. [23] KRISHNAN A, DAS M, BENDRE M, et al. Transfer learning via contextual invariants for one-to-many cross-domain recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 1081-1090. [24] STRUB F, MARY J, GAUDEL R. Hybrid collaborative filtering with autoencoders[J]. arXiv:1603.00806, 2016. [25] LIU H, WANG L, LI P, et al. Relation-propagation meta-learning on an explicit preference graph for cold-start recommendation[J]. Knowledge-Based Systems, 2023, 272: 110579. [26] DU Y, ZHU X, CHEN L, et al. MetaKG: meta-learning on knowledge graph for cold-start recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(10): 9850-9863. [27] WANG H, ZHAO Y. ML2E: meta-learning embedding ensemble for cold-start recommendation[J]. IEEE Access, 2020, 8: 165757-165768. [28] KIM M, YANG Y, RYU J H, et al. Meta-learning with adaptive weighted loss for imbalanced cold-start recommendation[J]. arXiv:2302.14640, 2023. [29] SHU H, CHUNG F L, LIN D. MetaGC-MC: a graph-based meta-learning approach to cold-start recommendation with/without auxiliary information[J]. Information Sciences, 2023, 623: 791-811. [30] SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018: 297-305. [31] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining. New York: ACM, 2019: 950-958. [32] SONG W, XIAO Z, WANG Y, et al. Session-based social recommendation via dynamic graph attention networks[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining. New York: ACM, 2019: 555-563. [33] 王美玲, 刘晓楠, 尹美娟, 等. 基于评论和物品描述的深度学习推荐算法[J]. 计算机科学, 2022, 49(3): 99-104. WANG M L, LIU X N, YIN M J, et al. Deep learning recommendation algorithm based on reviews and item descriptions[J]. Computer Science, 2022, 49(3): 99-104. [34] CHEN T, WONG R C W. Handling information loss of graph neural networks for session-based recommendation [C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2020: 1172-1180. [35] XU C, ZHAO P, LIU Y, et al. Graph contextualized self- attention network for session-based recommendation[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 3940- 3946. [36] WANG Z, WEI W, CONG G, et al. Global context enhanced graph neural networks for session-based recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 169-178. [37] UR REHMAN I, ALI W, JAN Z, et al. CAML: contextual augmented meta-learning for cold-start recommendation[J]. Neurocomputing, 2023, 533: 178-190. [38] 孙爱晶, 王国庆. 邻居关系感知的图卷积网络推荐模型 [J]. 计算机工程与应用, 2023, 59(9): 112-122. SUN A J, WANG G Q. Neighbor relation-aware graph convolutional network for recommendation[J]. Computer Engineering and Applications, 2023, 59(9): 112-122. [39] 曹阳, 高旻, 余俊良, 等. 基于双图混合随机游走的社会化推荐模型[J]. 电子学报, 2023, 51(2): 286-296. CAO Y, GAO M, YU J L, et al. Bi-graph mix-random walk based social recommendation model[J]. Acta Electronica Sinica, 2023, 51(2): 286-296. [40] WANG J, MEI H, LI K, et al. Collaborative filtering model of graph neural network based on random walk[J]. Applied Sciences, 2023, 13(3): 1786. [41] 耿秀丽, 牛璐. 基于不同搜索路径下成对随机游走的推荐算法[J/OL]. 计算机集成制造系统 [2023-07-20]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211112.1135.006.html. GENG X L, NIU L. Recommendation algorithm based on pairwise random walk under different search paths[J/OL]. Computer Integrated Manufacturing Systems [2023-07-20]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211112.1135.006.html. [42] QIAN T, LIANG Y, LI Q, et al. Attribute graph neural networks for strict cold start recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3597-3610. [43] 吴正洋, 张广涛, 黄立, 等. 基于异质图嵌入和会话交互的课程推荐模型[J/OL]. 计算机工程 [2023-07-20]. https://doi.org/10.19678/j.issn.1000-3428.0067554. WU Z Y, ZHANG G T, HUANG L, et al. Course recommendation based on heterogeneous graph embedding and session interaction[J/OL]. Computer Engineering [2023-07-20]. https://doi.org/10.19678/j.issn.1000-3428.0067554. [44] 葛尧, 陈松灿. 面向推荐系统的图卷积网络[J]. 软件学报, 2020, 31(4): 1101-1112. GE Y, CHEN S C. Graph convolutional network for recommender systems[J]. Journal of Software, 2020, 31(4): 1101-1112. [45] 高巍, 朱风兰, 李大舟, 等. 图神经网络在冷启动推荐中的实现[J]. 计算机工程与设计, 2022, 43(9): 2557-2566. GAO W, ZHU F L, LI D Z, et al. Realization of graph neural network in cold start recommendation[J]. Computer Engineering and Design, 2022, 43(9): 2557-2566. [46] 李祥霞, 陈楷锐, 李彬. 融合多维梯度反馈的生成对抗网络推荐系统[J/OL]. 计算机科学与探索 [2023-07-20]. http://kns.cnki.net/kcms/detail/11.5602.TP.20230705.0952.002.html. LI X X, CHEN K R, LI B. Generative adversarial network recommendation system with multi-dimensional gradient feedback mechanism[J]. Journal of Frontiers of Computer Science and Technology [2023-07-20]. http://kns.cnki.net/ kcms/detail/11.5602.TP.20230705.0952.002.html. [47] XIE Z, LIU C, ZHANG Y, et al. Adversarial and contrastive variational autoencoder for sequential recommendation[C]//Proceedings of the Web Conference 2021. New York: ACM, 2021: 449-459. [48] CHEN C C, LAI P L, CHEN C Y. ColdGAN: an effective cold-start recommendation system for new users based on generative adversarial networks[J]. Applied Intelligence, 2023, 53(7): 8302-8317. [49] WU H, LONG J, LI N, et al. Adversarial auto-encoder domain adaptation for cold-start recommendation with positive and negative hypergraphs[J]. ACM Transactions on Information Systems, 2022, 41(2): 1-25. [50] WANG H, ZHANG F, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation [C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2000-2010. [51] 高仰, 刘渊. 融合社交关系和知识图谱的推荐算法[J]. 计算机科学与探索, 2023, 17(1): 238-250. GAO Y, LIU Y. Recommendation algorithm combining social relationship and knowledge graph[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 238-250. [52] ZHAO W, LI Y, FAN T, et al. A novel embedding learning framework for relation completion and recommendation based on graph neural network and multi-task learning[J/OL]. Soft Computing [2023-07-20]. https://doi.org/10.1007/s00500- 021-06617-0. [53] 梅雨竹, 胡竹林, 朱欣娟. 融合双层注意力机制的群组偏好融合策略研究[J]. 计算机工程与应用, 2023, 59(9): 272-279. MEI Y Z, HU Z L, ZHU X J. Research on group preference fusion strategy based on two-layer attention mechanism[J]. Computer Engineering and Applications, 2023, 59(9): 272-279. [54] 王利娥, 李东城, 李先贤. 基于跨域关联与隐私保护的深度推荐模型[J]. 软件学报, 2023, 34(7): 3365-3384. WANG L E, LI D C, LI X X. Deep recommendation model with cross-domain association and privacy protection[J]. Journal of Software, 2023, 34(7): 3365-3384. [55] ZHOU M, ZHANG C, HAN X, et al. Knowledge graph completion for hyper-relational data[C]//Proceedings of the 2nd International Conference on Big Data Computing and Communications, Shenyang, Jul 29-31, 2016. Cham: Springer, 2016: 236-246. [56] SHEN T, JIA J, LI Y, et al. PEIA: personality and emotion integrated attentive model for music recommendation on social media platforms[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2020: 206-213. [57] MAGRON P, FéVOTTE C. Neural content-aware collaborative filtering for cold-start music recommendation[J]. Data Mining and Knowledge Discovery, 2022, 36(5): 1971-2005. [58] LI C, LI Y, WANG C, et al. The multimedia recommendation algorithm based on probability graphical model[J]. Multimedia Tools and Applications, 2022, 81(14): 19035-19050. [59] ZHANG Z, SUN R, CHOO K K R, et al. A novel social situation analytics-based recommendation algorithm for multimedia social networks[J]. IEEE Access, 2019, 7: 117749-117760. [60] LA GATTA V, MOSCATO V, PENNONE M, et al. Music recommendation via hypergraph embedding[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 7887-7899. [61] HUNG T Y, HUANG S H. Addressing the cold-start problem of recommendation systems for financial products by using few-shot deep learning[J]. Applied Intelligence, 2022, 52(13): 15529-15546. [62] VIKTORATOS I, TSADIRAS A. A machine learning approach for solving the frozen user cold-start problem in personalized mobile advertising systems[J]. Algorithms, 2022, 15(3): 72. [63] LI Z, AMAGATA D, ZHANG Y, et al. HML4Rec: hierarchical meta-learning for cold-start recommendation in flash sale e-commerce[J]. Knowledge-Based Systems, 2022, 255: 109674. [64] 程秀峰, 张孜铭. 基于情境感知的电商平台推荐系统框架研究[J]. 情报理论与实践, 2021, 44(2): 168-177. CHEN X F, ZHANG Z M. The framework of E-commerce platform recommendation system based on context-awareness[J]. Information Studies: Theory & Application, 2021, 44(2): 168-177. [65] HENK V, VAHDATI S, NAYYERI M, et al. Metaresearch recommendations using knowledge graph embeddings[C]//Proceedings of the 2019 Workshop on Recommender Systems and Natural Language Processing, Honolulu, Jan 27-28, 2019. Menlo Park: AAAI, 2019: 1-6. [66] CHEN W, ZHANG Y, XIAN Y, et al. Hotspot information network and domain knowledge graph aggregation in heterogeneous network for literature recommendation[J]. Applied Sciences, 2023, 13(2): 1093. [67] MANJU G, ABHINAYA P, HEMALATHA M, et al. Cold start problem alleviation in a research paper recommendation system using the random walk approach on a heterogeneous user-paper graph[J]. International Journal of Intelligent Information Technologies, 2020, 16(2): 24-48. [68] 刘振鹏, 尹文召, 王文胜, 等. HRS-DC: 基于深度学习的混合推荐模型[J]. 计算机工程与应用, 2020, 56(14): 169-175. LIU Z P, YIN W Z, WANG W S, et al. HRS-DC: hybrid recommendation model based on deep learning[J]. Computer Engineering and Applications, 2020, 56(14): 169-175. [69] 付峻宇, 朱小栋, 陈晨. 基于图卷积的双通道协同过滤推荐算法[J]. 计算机应用研究, 2023, 40(1): 129-135. FU J Y, ZHU X D, CHEN C. Two-channel collaborative filtering recommendation algorithm based on graph convolution[J]. Application Research of Computers, 2023, 40(1): 129-135. |
[1] | WANG Yan, NAN Peiqi. MFFNet: Image Semantic Segmentation Network of Multi-level Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 707-717. |
[2] | LYU Jia, ZENG Mengyao, DONG Baosen. Prototype Rectification Few-Shot Classification Model with Dual-Path Cooperation [J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 693-706. |
[3] | QI Xin, YUAN Feiniu, SHI Jinting, WANG Guiqian. Semantic Segmentation Algorithm of Multi-level Feature Fusion Network [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 922-932. |
[4] | AN Shengbiao, GUO Yuqi, BAI Yu, WANG Tengbo. Survey of Few-Shot Image Classification Research [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 511-532. |
[5] | LIU Chunlei, CHEN Tian‘en, WANG Cong, JIANG Shuwen, CHEN Dong. Survey of Few-Shot Object Detection [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 53-73. |
[6] | WU Mei, DING Yitong, ZHAO Jianli. Improved Incremental Dynamic and Static Combined Collaborative Filtering Method [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2089-2095. |
[7] | TIAN Xuan, CHEN Hangxue. Survey on Applications of Knowledge Graph Embedding in Recommendation Tasks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1681-1705. |
[8] | YUAN Lining, LI Xin, WANG Xiaodong, LIU Zhao. Graph Embedding Models: A Survey [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 59-87. |
[9] | GAO Yang, LIU Yuan. Recommendation Algorithm Combining Knowledge Graph and Short-Term Preferences [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1133-1144. |
[10] | WANG Xinwen, XIE Linbo, PENG Li. Context Information Fusion Method for Temporal Action Proposals [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 486-494. |
[11] | ZHAO Xueli, LU Guangyue, LV Shaoqing, ZHANG Pan. Attributed Bipartite Network Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 495-505. |
[12] | XU Lei, HUANG Ling, WANG Changdong. Motif-Preserving Network Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1261-1271. |
[13] | ZHANG Yu, GAO Kening, CHEN Mo, YU Ge. Method of Link Prediction Combining Network Structure and Node Attributes [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1094-1101. |
[14] | YANG Xiaocui, SONG Jiaxiu, ZHANG Xihuang. Link Prediction Algorithm Based on Network Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 812-821. |
[15] | WANG Yuchen, WANG Baoliang, HOU Yonghong. Bandits Recommendation Algorithm Based on Collaborative Filtering and Context Information [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(3): 361-373. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/