[1] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[2] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2023-08-20]. https://arxiv.org/abs/1312.6114.
[3] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems 33, 2020: 6840-6851.
[4] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017.?Washington: IEEE Computer Society, 2017: 1251-1258.
[5] BAO H, DONG L, PIAO S, et al. BEiT: BERT pre-training of image transformers[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2106.08254.
[6] FANG Y, SUN Q, WANG X, et al. EVA-02: a visual representation for neon genesis[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2303.11331.
[7] ISMAIL A, ELPELTAGY M, ZAKI M S, et al. A new deep learning-based methodology for video deepfake detection using XGBoost[J]. Sensors, 2021, 21(16): 5413.
[8] DAS S, SEFERBEKOV S, DATTA A, et al. Towards solving the deepfake problem: an analysis on improving deepfake detection using dynamic face augmentation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 11-17, 2021. Piscataway: IEEE, 2021: 3776-3785.
[9] KIM M, TARIQ S, WOO S S. FReTAL: generalizing deepfake detection using knowledge distillation and representation learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021.?Piscataway: IEEE, 2021: 1001-1012.
[10] TARIQ S, LEE S, WOO S S. A convolutional LSTM based residual network for deepfake video detection[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2009.07480.
[11] SAIKIA P, DHOLARIA D, YADAV P, et al. A hybrid CNN-LSTM model for video deepfake detection by leveraging optical flow features[C]//Proceedings of the 2022 International Joint Conference on Neural Networks, Padua, Jul 18-23, 2022.?Piscataway: IEEE, 2022: 1-7.
[12] WANG J, WU Z, OUYANG W, et al. M2TR: multi-modal multi-scale transformers for deepfake detection[C]//Proceedings of the 2022 International Conference on Multimedia Retrieval, Newark, Jun 27-30, 2022.?New York: ACM, 2022: 615-623.
[13] YANG W, ZHOU X, CHEN Z, et al. AVoiD-DF: audio-visual joint learning for detecting deepfake[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2015-2029.
[14] WANG T, CHENG H, CHOW K P, et al. Deep convolutional pooling transformer for deepfake detection[J]. ACM Transactions on Multimedia Computing, Communications and Applications, 2023, 19(6): 1-20.
[15] COCCOMINI D A, MESSINA N, GENNARO C, et al. Genera-tive adversarial networks[C]//Proceedings of the 2022 International Conference on Image Analysis and Processing. Cham: Springer, 2022: 219-229.
[16] ZHANG D, LIN F, HUA Y, et al. Deepfake video detection with spatiotemporal dropout transformer[C]//Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Oct 10-14, 2022.?New York: ACM, 2022: 5833-5841.
[17] LESTER B, AL-RFOU R, CONSTANT N. The power of scale for parameter-efficient prompt tuning[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2104.08691.
[18] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]//Proceedings of the 36th International Conference on Machine Learning, Long Beach, Jun 9-15, 2019. New York: PMLR, 2019: 2790-2799.
[19] HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2106.09685.
[20] JIA M, TANG L, CHEN B C, et al. Visual prompt tuning[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 709-727.
[21] CHEN S, GE C, TONG Z, et al. AdaptFormer: adapting vision transformers for scalable visual recognition[C]//Advances in Neural Information Processing Systems 35, 2022: 16664-16678.
[22] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[23] SU J, LU Y, PAN S, et al. RoFormer: enhanced transformer with rotary position embedding[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2104.09864.
[24] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[EB/OL]. [2023-08-20]. https://arxiv.org/abs/1710.05941.
[25] AGHAJANYAN A, ZETTLEMOYER L, GUPTA S. Intrinsic dimensionality explains the effectiveness of language model fine-tuning[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2012.13255.
[26] HAMEED M G A, TAHAEI M S, MOSLEH A, et al. Convolutional neural network compression through generalized Kronecker product decomposition[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, Feb 22-Mar 1, 2022.?Menlo Park: AAAI, 2022: 771-779.
[27] 张璐, 芦天亮, 杜彦辉. 人脸视频深度伪造检测方法综述[J]. 计算机科学与探索, 2023, 17(1): 1-26.
ZHANG L, LU T L, DU Y H. Overview of facial deepfake video detection methods[J]. Journal of Frontiers of Computer Science & Technology, 2023, 17(1): 1-26.
[28] JIANG L, LI R, WU W, et al. DeeperForensics-1.0: a large-scale dataset for real-world face forgery detection[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Pisca-taway: IEEE, 2020: 2889-2898.
[29] ROSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics++: learning to detect manipulated facial images[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019.?Piscataway: IEEE, 2019: 1-11.
[30] LI Y, YANG X, SUN P, et al. Celeb-DF: a large-scale challenging dataset for deepfake forensics[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 3207-3216.
[31] DOLHANSKY B, BITTON J, PFLAUM B, et al. The deepfake detection challenge (DFDC) dataset[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2006.07397.
[32] ZI B, CHANG M, CHEN J, et al. WildDeepfake: a challenging real-world dataset for deepfake detection[C]//Proceedings of the 28th ACM International Conference on Multimedia, Seattle, Oct 12-16, 2020.?New York: ACM, 2020: 2382-2390.
[33] WODAJO D, ATNAFU S. Deepfake video detection using convolutional vision transformer[EB/OL]. [2023-08-20]. https://arxiv.org/abs/2102.11126.
[34] ZHAO H, ZHOU W, CHEN D, et al. Multi-attentional deepfake detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 2185-2194.
[35] 李颖, 边山, 王春桃, 等. CNN结合Transformer的深度伪造高效检测[J]. 中国图象图形学报, 2023, 28(3): 804-819.
LI Y, BIAN S, WANG C T, et al. CNN and Transformer-coordinated deepfake detection[J]. Journal of Image and Graphics, 2023, 28(3): 804-819.
[36] CHEN L, ZHANG Y, SONG Y, et al. Self-supervised learning of adversarial example: towards good generalizations for deepfake detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022.?Piscataway: IEEE, 2022: 18710-18719. |