Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (2): 454-464.DOI: 10.3778/j.issn.1673-9418.2311097

• Graphics·Image • Previous Articles     Next Articles

Camouflage Target Detection Method with Mutual Compensation of Local-Global Features

HE Wenhao, GE Haibo   

  1. Faculty of Electronic Engineering, Xi􀆳an University of Posts & Telecommunications, Xi􀆳an 710121, China
  • Online:2025-02-01 Published:2025-01-23

局部-全局特征相互补偿的伪装目标检测方法

何文昊,葛海波   

  1. 西安邮电大学 电子工程学院,西安 710121

Abstract: In the field of camouflage object detection (COD), the latest proposed methods mainly use the local features of the camouflaged target to complete the COD task. The output prediction map has problems such as rough target contours and incomplete objects. In response to the above problems, this paper proposes a camouflaged target detection method based on local-global feature mutual compensation, which uses local features and global features to compensate for each other to detect camouflaged targets. Firstly, a non-local feature enhancement module (N-LFEM) is designed to use a non-local mechanism to interact with adjacent local areas and enhance local feature expression. Then, a local-global feature   interaction module (L-GFIM) is constructed to average local features to obtain global features, and perform mutual compensation of local features and global features. Finally, a local-global feature cross-covariance module (L-GFCCM) is     designed to obtain spatial indicators through semantic alignment and cross-covariance to locate the area where the camouflaged target is located, and select the feature map with the highest similarity to output. Experiments on 3 public datasets show that this algorithm is better than the other 8 latest models. On the COD10K dataset, the mean absolute error (MAE) reaches 0.028.

Key words: camouflage object detection, local-global feature mutual compensation, local-global feature cross-covariance

摘要: 在伪装目标检测(COD)领域中,最新提出的方法主要利用伪装目标的局部特征完成COD任务,输出的预测图存在目标轮廓粗糙和对象不完整的问题。针对上述问题,提出了基于局部-全局特征相互补偿的伪装目标检测方法,利用局部特征与全局特征相互补偿进行伪装目标的检测。设计一个非局部特征增强模块(N-LFEM),使用非局部机制来交互相邻局部区域,增强局部特征表达。构建一个局部-全局特征交互模块(L-GFIM),平均局部特征得到全局特征,执行局部特征与全局特征的相互补偿。设计一个局部-全局特征交叉协方差模块(L-GFCCM),通过语义对齐和交叉协方差获取空间指标定位伪装目标所在区域,选取相似性最高的特征图输出。在3个公开数据集上的实验表明,该算法优于其他8个最新模型。在COD10K数据集上,平均绝对误差(MAE)达到了0.028。

关键词: 伪装目标检测, 局部-全局特征相互补偿, 局部-全局特征交叉协方差