[1] BELLMAN R. Dynamic programming treatment of the travelling salesman problem[J]. Journal of the ACM, 1962, 9(1): 61-63.
[2] HELD M, KARP R M. A dynamic programming approach to sequencing problems[J]. Journal of the Society for Industrial and Applied Mathematics, 1962, 10(1): 196-210.
[3] DANTZIG G, FULKERSON R, JOHNSON S. Solution of a large-scale traveling-salesman problem[J]. Journal of the Operations Research Society of America, 1954, 2(4): 393-410.
[4] KIRKPATRICK S, GELATT C D JR, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680.
[5] CROES G A. A method for solving traveling-salesman problems[J]. Operations Research, 1958, 6(6): 791-812.
[6] BIXBY R, ROTHBERG E. Progress in computational mixed integer programming: a look back from the other side of the tipping point[J]. Annals of Operations Research, 2007, 149(1): 37-41.
[7] APPLEGATE D L, BIXBY R E, CHVATAL V, et al. The traveling salesman problem: a computational study[M]. Princeton: Princeton University Press, 2011.
[8] CHRISTOFIDES N. Worst-case analysis of a new heuristic for the travelling salesman problem[J]. Operations Research Forum, 2022, 3(1): 20.
[9] PERRON L, FORTUNATO V. OR-tools[EB/OL]. [2024-02-25]. https://developers.google.com/optimization/.
[10] VINYALS O, FORTUNATO M, JAITLY N. Pointer networks[C]//Advances in Neural Information Processing Systems 28, Montreal, Dec 7-12, 2015: 2692-2700.
[11] NAZARI M, OROOJLOOY A, TAKÁČ M, et al. Reinforcement learning for solving the vehicle routing problem[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018: 9861-9871.
[12] JOSHI C K, LAURENT T, BRESSON X. An efficient graph convolutional network technique for the travelling salesman problem[EB/OL]. [2024-02-25]. https://arxiv.org/abs/1906.01227.
[13] STOHY A, ABDELHAKAM H T, ALI S, et al. Hybrid pointer networks for traveling salesman problems optimization[J]. PLoS One, 2021, 16(12): e0260995.
[14] MA Q, GE S W, HE D Y, et al. Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning[EB/OL]. [2024-02-25]. https://arxiv.org/abs/1911.04936.
[15] MIKI S, EBARA H. Solving traveling salesman problem with image-based classification[C]//Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2019: 1118-1123.
[16] LING Z X, TAO X Y, ZHANG Y, et al. Solving optimization problems through fully convolutional networks: an application to the traveling salesman problem[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(12): 7475-7485.
[17] SULTANA N, CHAN J, SARWAR T, et al. Learning to optimise general TSP instances[J]. International Journal of Machine Learning and Cybernetics, 2022, 13(8): 2213-2228.
[18] KOOL W, VAN HOOF H, WELLING M. Attention, learn to solve routing problems![EB/OL]. [2024-02-25]. https://arxiv.org/abs/1803.08475.
[19] WU Y X, SONG W, CAO Z G, et al. Learning improvement heuristics for solving routing problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 5057-5069.
[20] BRESSON X, LAURENT T. The transformer network for the traveling salesman problem[EB/OL]. [2024-02-25]. https://arxiv.org/abs/2103.03012.
[21] GUO Q P, QIU X P, LIU P F, et al. Star-transformer[EB/OL]. [2024-02-25]. https://arxiv.org/abs/1902.09113.
[22] 程荣. 遗传算法求解旅行商问题[J]. 科技风, 2017(16): 40.
CHENG R. Genetic algorithm for solving traveling salesman problem[J]. Technology Wind, 2017(16): 40.
[23] GOMEZ A N, REN M Y, URTASUN R, et al. The reversible residual network: backpropagation without storing activations[C]//Advances in Neural Information Processing Systems 30, 2017: 2214-2224.
[24] KITAEV N, KAISER Ł, LEVSKAYA A. Reformer: the efficient transformer[EB/OL]. [2024-02-25]. https://arxiv.org/abs/2001.04451.
[25] JIN Y, DING Y D, PAN X H, et al. Pointerformer: deep reinforced multi-pointer transformer for the traveling salesman problem[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(7): 8132-8140.
[26] BELLO I, PHAM H, LE Q V, et al. Neural combinatorial optimization with reinforcement learning[EB/OL]. [2024-01-20]. https://arxiv.org/abs/1611.09940.
[27] JUNG M, LEE J, KIM J. A lightweight CNN-transformer model for learning traveling salesman problems[EB/OL]. [2024-01-20]. https://arxiv.org/abs/2305.01883.
[28] Google. OR-tools: Googles operations research tools[EB/OL]. [2024-01-20]. https://gitcode.com/google/or-tools.
[29] HELSGAUN K. An extension of the Lin-Kernighan-Helsgaun TSP solver for constrained traveling salesman and vehicle routing problems[R]. Roskilde: Roskilde University, 2017: 966-980.
[30] JOHNSON D S. Local optimization and the traveling salesman problem[M]//Automata, languages and programming. Berlin, Heidelberg: Springer, 2005: 446-461.
[31] DAI H J, KHALIL E B, ZHANG Y Y, et al. Learning combinatorial optimization algorithms over graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6351-6361.
[32] DEUDON M, COURNUT P, LACOSTE A, et al. Learning heuristics for the TSP by policy gradient[M]//Integration of constraint programming, artificial intelligence, and operations research. Cham: Springer, 2018: 170-181.
[33] XIAO Y B, WANG D, LI B Y, et al. Reinforcement learning-based non-autoregressive solver for traveling salesman problems[EB/OL]. [2024-01-20]. https://arxiv.org/abs/2308.00560.
[34] DA COSTA P, RHUGGENAATH J, ZHANG Y Q, et al. Learning 2-opt heuristics for routing problems via deep reinforcement learning[J]. SN Computer Science, 2021, 2(5): 388. |