[1] 曹海军, 沈博仟. “枫桥经验”数智创新:技术平台与群众路线的融合机制研究——以Y市“政务热线+网格”模式为例[J]. 河南社会科学, 2024, 32(6): 117-124.
CAO H J, SHEN B Q. “Fengqiao Experience”digital in-telligence innovation: research on the integration mecha-nism of technology platform and mass line—taking the“Government Hotline + Grid”model of Y city as an example[J]. Henan Social Sciences, 2024, 32(6): 117-124.
[2] 娄文龙, 王晓萌, 王晓慧. 数字技术如何引发基层政府的行为策略?——基于B市C区12345政务服务便民热线的案例分析[J]. 天津行政学院学报, 2024, 26(3): 27-36.
LOU W L, WANG X M, WANG X H. How can digital technologies trigger the behavioral strategies of the grass-roots government?—Case analysis based on 12345 government service convenience hotline in C district of B city[J]. Journal of Tianjin Administration Institute, 2024, 26(3): 27-36.
[3] BAWDEN D, ROBINSON L. The dark side of information: over-load, anxiety and other paradoxes and pathologies[J]. Journal of Information Science, 2009, 35(2): 180-191.
[4] ABUJABAL A, YAHYA M, RIEDEWALD M, et al. Automated template generation for question answering over knowledge graphs[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 1191-1200.
[5] CHEN B, SUN L, HAN X. Sequence-to-action: end-to-end semantic graph generation for semantic parsing[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1809.00773.
[6] BORDES A, CHOPRA S, WESTON J. Question answering with subgraph embeddings[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1406.3676.
[7] YANG H, LIU X Y, WANG C D. FinGPT: open-source financial large language models[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2306.06031.
[8] 张金营, 王天堃, 么长英, 等. 基于大语言模型的电力知识库智能问答系统构建与评价[J/OL]. 计算机科学 [2024-05-31]. http://kns.cnki.net/kcms/detail/50.1075.TP.20240528. 0931.002.html.
ZHANG J Y, WANG T K, YAO C Y, et al. Construction and evaluation of intelligent question answering system for electric power knowledge base based on large language model[J/OL]. Computer Science [2024-05-31]. http://kns. cnki.net/kcms/detail/50.1075.TP.20240528.0931.002.html.
[9] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388.
ZHANG H Y, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388.
[10] 王珊珊. 智道奇点政务服务人工智能大模型亮相[N]. 中国建设报, 2024-05-30(2).
WANG S S. Smart Dodge Point government service artificial intelligence large model unveiled[N]. China Construction News, 2024-05-30(2).
[11] 舒抒. 窗口人员业务精湛,为何还要大模型[N]. 解放日报, 2024-06-26(2).
SHU S. Window staff business is superb, why do you want a large model[N]. Liberation Daily, 2024-06-26(2).
[12] LEWIS P, PEREZ E, PIKTUS A, et al. Retrieval-augmented generation for knowledge-intensive NLP tasks[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 9459-9474.
[13] CHEN H X, LI Y Q, SHI S Y, et al. Graph collaborative reasoning[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining. New York: ACM, 2022: 75-84.
[14] 黄家豪, 王冰, 唐漾. 化工安全知识图谱的本体设计与基于规则推理的知识补全[J/OL]. 控制工程 [2024-08-03]. https://doi.org/10.14107/j.cnki.kzgc.20240077.
HUANG J H, WANG B, TANG Y. Ontology design of chemical safety knowledge graph and a rule-based inference approach for knowledge completion[J/OL]. Control Engineering of China [2024-08-03]. https://doi.org/10.14107/ j.cnki.kzgc.20240077.
[15] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems 26, Lake?Tahoe, Dec?5-8, 2013: 2787-2795.
[16] LI Z, LIU X, WANG X, et al. TransO: a knowledge-driven representation learning method with ontology information constraints[J]. World Wide Web, 2023, 26(1): 297-319.
[17] 彭鐄, 曾维新, 周杰, 等. 基于图神经网络的实体对齐表示学习方法比较研究[J]. 计算机科学与探索, 2023, 17(10): 2343-2357.
PENG H, ZENG W X, ZHOU J, et al. Contrast research of representation learning in entity alignment based on graph neural network[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2343-2357.
[18] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1911.03082.
[19] ZHANG Y Q, YAO Q M. Knowledge graph reasoning with relational digraph[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 912-924.
[20] SAXENA A, TRIPATHI A, TALUKDAR P. Improving multi-hop question answering over knowledge graphs using know-ledge base embeddings[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4498-4507.
[21] 田侃, 曹新汶, 张浩然, 等. 结合图卷积模型和共享编码的知识图谱问答方法[J/OL]. 计算机工程与应用 [2024-08-03]. http://kns.cnki.net/kcms/detail/11.2127.TP.20240625.1053. 002.html.
TIAN K, CAO X W, ZHANG H R, et al. Knowledge graph question answering with shared encoding and graph convolution networks[J/OL]. Computer Engineering and Applications [2024-08-03]. http://kns.cnki.net/kcms/detail/11.2127. TP.20240625.1053.002.html.
[22] KASNECI E, SE?LER K, KüCHEMANN S, et al. ChatGPT for good? On opportunities and challenges of large language models for education[J]. Learning and Individual Differences, 2023, 103: 102274.
[23] 朱娜娜, 王航, 张家乐, 等. 基于预训练语言模型的政策识别研究[J]. 中文信息学报, 2022, 36(2): 104-110.
ZHU N N, WANG H, ZHANG J L, et al. Policy identification based on pretrained language model[J]. Journal of Chinese Information Processing, 2022, 36(2): 104-110.
[24] 华斌, 康月, 范林昊. 政策文本的知识建模与关联问答研究[J]. 数据分析与知识发现, 2022, 6(11): 79-92.
HUA B, KANG Y, FAN L H. Knowledge modeling and association Q&A for policy texts[J]. Data Analysis and Knowledge Discovery, 2022, 6(11): 79-92.
[25] 王昀, 胡珉, 塔娜, 等. 大语言模型及其在政务领域的应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 649-658.
WANG Y, HU M, TA N, et al. Large language models and their application in government affairs[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(4): 649-658.
[26] SHANAHAN M. Talking about large language models[J]. Communications of the ACM, 2024, 67(2): 68-79.
[27] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 1877-1901.
[28] CHOWDHERY A, NARANG S, DEVLIN J, et al. Palm: scaling language modeling with pathways[J]. Journal of Machine Learning Research, 2023, 24.
[29] 杨波, 孙晓虎, 党佳怡, 等. 面向医疗问答系统的大语言模型命名实体识别方法[J]. 计算机科学与探索, 2023, 17(10): 2389-2402.
YANG B, SUN X H, DANG J Y, et al. Named entity recognition method of large language model for medical question answering system[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2389-2402.
[30] JI Z, LEE N, FRIESKE R, et al. Survey of hallucination in natural language generation[J]. ACM Computing Surveys, 2023, 55(12): 1-38.
[31] 李源, 马新宇, 杨国利, 等. 面向知识图谱和大语言模型的因果关系推断综述[J]. 计算机科学与探索, 2023, 17(10): 2358-2376.
LI Y, MA X Y, YANG G L, et al. Survey of causal inference for knowledge graphs and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2358-2376.
[32] RAJANI N F, MCCANN B, XIONG C, et al. Explain yourself! Leveraging language models for commonsense reasoning[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1906.02361.
[33] WEI J, WANG X, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]//Advances in Neural Information Processing Systems 35, New Orleans, Nov 28-Dec 9, 2022: 24824-24837.
[34] LI S, GAO Y, JIANG H, et al. Graph reasoning for question answering with triplet retrieval[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2305.18742.
[35] 文森, 钱力, 胡懋地, 等. 基于大语言模型的问答技术研究进展综述[J/OL]. 数据分析与知识发现 [2024-06-01]. http://kns.cnki.net/kcms/detail/10.1478.G2.20231110.1612.002.html.
WEN S, QIAN L, HU M D, et al. A survey of research progress of question answering technology based on large language model[J/OL]. Data Analysis and Knowledge Discovery [2024-06-01]. http://kns.cnki.net/kcms/detail/10.1478. G2.20231110.1612.002.html.
[36] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. [2024-04-15]. https://arxiv.org/abs/1810.04805.
[37] HU Z, DONG Y, WANG K, et al. Heterogeneous graph transformer[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 2704-2710.
[38] HU E J, SHEN Y, WALLIS P, et al. LoRA: low-rank adaptation of large language models[EB/OL]. [2024-04-15]. https://arxiv.org/abs/2106.09685. |