[1] 向馗, 蒋静坪. 时间序列的非平稳度分析[J]. 科技通报, 2007, 23(1): 1-5.
XIANG K, JIANG J P. Analysis of nonstationarity in the time series[J]. Bulletin of Science and Technology, 2007, 23(1): 1-5.
[2] 梁宏涛, 刘硕, 杜军威, 等. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300.
LIANG H T, LIU S, DU J W, et al. Review of deep learning applied to time series prediction[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300.
[3] 赵彦博. 基于CNN-BiLSTM的已实现波动率预测与分析研究[D]. 大连: 东北财经大学, 2021.
ZHAO Y B. Research on forecast and analysis of realized volatility based on CNN-BiLSTM[D]. Dalian: Dongbei Uni-versity of Finance and Economics, 2021.
[4] KONG Y H, LIM K Y, CHIN W Y. Time series forecasting using a hybrid prophet and long short-term memory model[C]//Proceedings of the 6th International Conference on Soft Computing in Data Science. Singapore: Springer, 2021: 183-196.
[5] ALI M, KHAN D M, ALSHANBARI H M, et al. Prediction of complex stock market data using an improved hybrid EMD-LSTM model[J]. Applied Sciences, 2023, 13(3): 1429.
[6] 孔繁苗, 高鹭, 李鹏程, 等. EMD-LSTM-LB分频时序预测算法[J]. 计算机工程与设计, 2023, 44(10): 3021-3030.
KONG F M, GAO L, LI P C, et al. EMD-LSTM-LB frequency division time series prediction algorithm[J]. Computer Engineering and Design, 2023, 44(10): 3021-3030.
[7] 康瑞雪, 牛保宁, 李显, 等. 融合多源数据输入具有自注意力机制的LSTM股票价格预测[J]. 小型微型计算机系统, 2023, 44(2): 326-333.
KANG R X, NIU B N, LI X, et al. Predicting stock prices using LSTM with the self-attention mechanism and multi-source data[J]. Journal of Chinese Computer Systems, 2023, 44(2): 326-333.
[8] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]//Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2011: 4144-4147.
[9] PASSALIS N, TEFAS A, KANNIAINEN J, et al. Deep adaptive input normalization for time series forecasting[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3760-3765.
[10] KIM T, KIM J, TAE Y, et al. Reversible instance normalization for accurate time-series forecasting against distribution shift[C]//Proceedings of the 10th International Conference on Learning Representations, 2022.
[11] TAYLOR S J, LETHAM B. Forecasting at scale[J]. The American Statistician, 2018, 72(1): 37-45.
[12] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[13] WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[14] RUBASINGHE O, ZHANG X N, CHAU T K, et al. A novel sequence to sequence data modelling based CNN-LSTM algorithm for three years ahead monthly peak load forecasting[J]. IEEE Transactions on Power Systems, 2023, 39(1): 1932-1947.
[15] 方义秋, 卢壮, 葛君伟. 联合RMSE损失LSTM-CNN模型的股价预测[J]. 计算机工程与应用, 2022, 58(9): 294-302.
FANG Y Q, LU Z, GE J W. Forecasting stock prices with combined RMSE loss LSTM-CNN model[J]. Computer Engineering and Applications, 2022, 58(9): 294-302.
[16] 赵帅斌, 林旭东, 翁晓健. 基于经验模态分解与投资者情绪的Attention-BiLSTM股价趋势预测模型[J]. 计算机应用, 2023, 43(S1): 112-118.
ZHAO S B, LIN X D, WENG X J. Attention-BiLSTM stock price trend prediction model based on empirical mode decomposition and investor sentiment[J]. Journal of Computer Applications, 2023, 43(S1): 112-118.
[17] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[18] LIANG Y Z, WANG H F, ZHANG W Q. A knowledge-guided method for disease prediction based on attention mechanism[C]//Proceedings of the 2022 International Conference on Web Information Systems and Applications. Cham: Springer, 2022: 329-340.
[19] ZHOU H Y, ZHANG S H, PENG J Q, et al. Informer: beyond efficient transformer for long sequence time-series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115. |