[1] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250.
[2] VRANDE?I? D, KR?TZSCH M. Wikidata[J]. Communications of the ACM, 2014, 57(10): 78-85.
[3] 毛存礼, 郝鹏鹏, 雷雄丽, 等. 基于实体语义扩展的跨境民族文化文本检索[J]. 中文信息学报, 2022, 36(11): 101-109.
MAO C L, HAO P P, LEI X L, et al. Entity semantic extension based culture text retrieval for cross-country ethnic group[J]. Journal of Chinese Information Processing, 2022, 36(11): 101-109.
[4] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388.
ZHANG H Y, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388.
[5] 王永贵, 陈书铭, 刘义海, 等. 结合超图对比学习和关系聚类的知识感知推荐算法[J]. 计算机科学与探索, 2024, 18(8): 2140-2155.
WANG Y G, CHEN S M, LIU Y H, et al. Knowledge-aware recommendation algorithm combining hypergraph contrast learning and relational clustering[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(8): 2140-2155.
[6] 于梦波, 杜建强, 罗计根, 等. 基于知识表示学习的知识图谱补全研究进展[J]. 计算机工程与应用, 2023, 59(18): 59-73.
YU M B, DU J Q, LUO J G, et al. Research progress of knowledge graph completion based on knowledge representation learning[J]. Computer Engineering and Applications, 2023, 59(18): 59-73.
[7] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 601-610.
[8] WEST R, GABRILOVICH E, MURPHY K, et al. Knowledge base completion via search-based question answering[C]//Proceedings of the 23rd International Conference on World Wide Web. New York: ACM, 2014: 515-526.
[9] 杜雪盈, 刘名威, 沈立炜, 等. 面向链接预测的知识图谱表示学习方法综述[J]. 软件学报, 2024, 35(1): 87-117.
DU X Y, LIU M W, SHEN L W, et al. Survey on representation learning methods of knowledge graph for link prediction[J]. Journal of Software, 2024, 35(1): 87-117.
[10] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[11] SI C, YU W, ZHOU P, et al. Inception transformer[C]//Advances in Neural Information Processing Systems 35, 2022: 23495-23509.
[12] LI D, XIA T, WANG J, et al. SDFormer: a shallow-to-deep feature interaction for knowledge graph embedding[J]. Knowledge-Based Systems, 2024, 284: 111253.
[13] CHEN S X, LIU X D, GAO J F, et al. HittER: hierarchical transformers for knowledge graph embeddings[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2021: 10395-10407.
[14] BAGHERSHAHI P, HOSSEINI R, MORADI H. Self-attention presents low-dimensional knowledge graph embeddings for link prediction[J]. Knowledge-Based Systems, 2023, 260: 110124.
[15] LU F Y, ZHOU J, HUANG X L. Enhancing the convolution-based knowledge graph embeddings by increasing dimension-wise interactions[J]. Data & Knowledge Engineering, 2023, 146: 102184.
[16] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems, 2013: 2787-2795.
[17] WANG Z, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2014: 1112-1119.
[18] SUN Z, DENG Z H, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations, 2019: 1-18.
[19] NICKEL M, TRESP V, KRIEGEL H P. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, 2011: 809-816.
[20] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embeddings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 2071-2080.
[21] BALAZEVIC I, ALLEN C, HOSPEDALES T. TuckER: tensor factorization for knowledge graph completion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2019: 5184-5193.
[22] TUCKER L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 1966, 31(3): 279-311.
[23] 栗书敬, 黄增峰. 混合曲率空间用于多关系异构知识图谱链接补全[J]. 计算机科学, 2023, 50(4): 172-180.
LI S J, HUANG Z F. Mixed-curve for link completion of multi-relational heterogeneous knowledge graphs[J]. Computer Science, 2023, 50(4): 172-180.
[24] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2018: 1811-1818.
[25] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 3009-3016.
[26] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th European Semantic Web Conference. Cham: Springer, 2018: 593-607.
[27] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[C]//Proceedings of the 8th International Conference on Learning Representations, 2020: 1-15.
[28] BANSAL T, JUAN D C, RAVI S, et al. A2N: attending to neighbors for knowledge graph inference[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4387-4392.
[29] YAO L, MAO C S, LUO Y. KG-BERT: BERT for knowledge graph completion[EB/OL]. [2024-07-23]. https://arxiv.org/abs/1909.03193.
[30] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding [C]//Proceedings of the 17th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[31] WANG B, SHEN T, LONG G, et al. Structure-augmented text representation learning for efficient knowledge graph completion[C]//Proceedings of the 30th Web Conference. New York: ACM, 2021: 1737-1748.
[32] NGUYEN D Q, NGUYEN T D, NGUYEN D Q, et al. A novel embedding model for knowledge base completion based on convolutional neural network[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 327-333.
[33] SUN Z Q, VASHISHTH S, SANYAL S, et al. A re-evaluation of knowledge graph completion methods[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 5516-5522.
[34] LACROIX T, USUNIER N, OBOZINSKI G. Canonical tensor decomposition for knowledge base completion[EB/OL]. [2024-07-23]. https://arxiv.org/abs/1806.07297.
[35] TOUTANOVA K, CHEN D Q. Observed versus latent features for knowledge base and text inference[C]//Proceedings of the 3rd Workshop on Continuous Vector Space Models and Their Compositionality. Stroudsburg: ACL, 2015: 57-66.
[36] KOK S, DOMINGOS P. Statistical predicate invention[C]//Proceedings of the 24th International Conference on Machine Learning, 2007: 433-440. |