[1] 龚俭, 臧小东, 苏琪, 等. 网络安全态势感知综述[J]. 软件学报, 2017, 28(4): 1010-1026.
GONG J, ZANG X D, SU Q, et al. Survey of network security situation awareness[J]. Journal of Software, 2017, 28(4): 1010-1026.
[2] 梁宏涛, 刘硕, 杜军威, 等. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300.
LIANG H T, LIU S, DU J W, et al. Review of deep learning applied to time series prediction[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1285-1300.
[3] ABASI. A network security situational awareness model based on information fusion[J]. Advanced Materials Research, 2013, 846/847: 1632-1635.
[4] 缪燕子, 王志铭, 李守军, 等. 基于背景值和结构相容性改进的多维灰色预测模型[J]. 自动化学报, 2022, 48(4): 1079-1090.
MIAO Y Z, WANG Z M, LI S J, et al. Improved multi-dimensional grey prediction model based on background value and structural compatibility[J]. Acta Automatica Sinica, 2022, 48(4): 1079-1090.
[5] HU J J, MA D Y, LIU C, et al. Network security situation prediction based on MR-SVM[J]. IEEE Access, 2019, 7: 130937-130945.
[6] 赵冬梅, 李志坚. 基于Transformer的网络安全态势预测[J]. 华中科技大学学报(自然科学版), 2022, 50(5): 46-52.
ZHAO D M, LI Z J. Network security situation prediction based on transformer[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50(5): 46-52.
[7] 孙隽丰, 李成海, 曹波. 基于TCN-BiLSTM的网络安全态势预测[J]. 系统工程与电子技术, 2023, 45(11): 3671-3679.
SUN J F, LI C H, CAO B. Network security situation prediction based on TCN-BiLSTM[J]. Systems Engineering and Electronics, 2023, 45(11): 3671-3679.
[8] ZHAO D M, SHEN P C, ZENG S G. ALSNAP: attention-based long and short-period network security situation prediction[J]. Ad Hoc Networks, 2023, 150: 103279.
[9] GUO Y Y, PENG Y F, HAO R, et al. Capturing spatial-temporal correlations with attention based graph convolutional network for network traffic prediction[J]. Journal of Network and Computer Applications, 2023, 220: 103746.
[10] YI H J, ZHANG S C, AN D Z, et al. PatchesNet: PatchTST-based multi-scale network security situation prediction[J]. Knowledge-Based Systems, 2024, 299: 112037.
[11] 杨新彪, 陈彦如, 秦娟, 等. 基于VMD-EWT-QWLSTM-TPE深度学习模型的超短时物流需求多步预测[J]. 控制与决策, 2024, 39(6): 1859-1868.
YANG X B, CHEN Y R, QIN J, et al. Multi-step prediction of ultra-short-term logistics demand based on VMD-EWT-QWLSTM-TPE deep learning model[J]. Control and Decision, 2024, 39(6): 1859-1868.
[12] ZHANG Y T, LI C L, JIANG Y Q, et al. Accurate prediction of water quality in urban drainage network with integrated EMD-LSTM model[J]. Journal of Cleaner Production, 2022, 354: 131724.
[13] 冯强, 赵建光, 杨茸, 等. 时间序列中非平稳性和波动性的建模及预测[J]. 计算机科学与探索, 2025, 19(5): 1313-1321.
FENG Q, ZHAO J G, YANG R, et al. Modeling and predicting time series with non-stationarity and volatility[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(5): 1313-1321.
[14] ZHANG S C, FU Q M, AN D Z. Network security situation prediction model based on VMD decomposition and DWOA optimized BiGRU-ATTN neural network[J]. IEEE Access, 2023, 11: 129507-129535.
[15] YANG A M, XIE B S, LIU Y K, et al. A network security situation prediction for consumer data in the Internet of things using variational mode decomposition (VMD) and fused CNN-BiLSTM-attention[J]. IEEE Transactions on Consumer Electronics, 2024, 70(1): 1122-1133.
[16] 姚晓阳, 孙晓蕾, 吴登生, 等. 基于互信息熵的国家风险相关性研究[J]. 系统工程理论与实践, 2015, 35(7): 1657-1665.
YAO X Y, SUN X L, WU D S, et al. Correlation research of country risk based on mutual information[J]. Systems Engineering - Theory & Practice, 2015, 35(7): 1657-1665.
[17] ZHANG W, ZHAO J P, QUAN P, et al. Prediction of influent wastewater quality based on wavelet transform and residual LSTM[J]. Applied Soft Computing, 2023, 148: 110858.
[18] 李小涛. 基于深度学习的网络安全态势感知研究[D]. 西安: 西安电子科技大学, 2021.
LI X T. Research on network security situation awareness based on deep learning[D]. Xi??an: Xidian University, 2021.
[19] WANG J, WEN Y Q, GOU Y D, et al. Fractional-order gradient descent learning of BP neural networks with Caputo derivative[J]. Neural Networks, 2017, 89: 19-30.
[20] LIU M, PENG W P, HOU M Z, et al. Radial basis function neural network with extreme learning machine algorithm for solving ordinary differential equations[J]. Soft Computing, 2023, 27(7): 3955-3964.
[21] SCARDAPANE S, COMMINIELLO D, SCARPINITI M, et al. Online sequential extreme learning machine with kernels[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 2214-2220.
[22] QUADRIANTO N, GHAHRAMANI Z. A very simple safe-Bayesian random forest[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(6): 1297-1303.
[23] SALVADOR S, CHAN P. Toward accurate dynamic time warping in linear time and space[J]. Intelligent Data Analysis, 2007, 11(5): 561-580.
[24] 王培, 江南, 万幼, 等. 应用Hausdorff距离的时空轨迹相似性度量方法[J]. 计算机辅助设计与图形学学报, 2019, 31(4): 647-658.
WANG P, JIANG N, WAN Y, et al. Measuring similarity of spatio-temporal trajectory using Hausdorff distance[J]. Journal of Computer-Aided Design & Computer Graphics, 2019, 31(4): 647-658.
[25] YIN J, SUN S L. Incomplete multi-view clustering with cosine similarity[J]. Pattern Recognition, 2022, 123: 108371.
[26] 张大海, 孙锴, 和敬涵. 基于相似日与多模型融合的短期负荷预测[J]. 电网技术, 2023, 47(5): 1961-1970.
ZHANG D H, SUN K, HE J H. Short-term load forecasting based on similar day and multi-model fusion[J]. Power System Technology, 2023, 47(5): 1961-1970.
[27] 姜万菲. 基于多模型权重提取与融合的网络安全态势预测研究[D]. 兰州: 兰州理工大学, 2016.
JIANG W F. Network security situation prediction based on multiple model weights extraction and fusion[D]. Lanzhou: Lanzhou University of Technology, 2016. |