[1] CHANG S, TAO Y T, ZHU H Z, et al. FriendSeeker: inferring hidden friendship in mobile social networks with sparse check-in data[C]//Proceedings of the 2023 IEEE 43rd International Conference on Distributed Computing Systems. Piscataway: IEEE, 2023: 440-450.
[2] QIN Y F, WU H J, JU W, et al. A diffusion model for POI recom-mendation[J]. ACM Transactions on Information Systems, 2024, 42(2): 1-27.
[3] 李曼文, 张月琴, 张晨威, 等. 异质图嵌入的地理不敏感时空兴趣点推荐方法[J]. 计算机科学与探索, 2024, 18(3): 755-767.
LI M W, ZHANG Y Q, ZHANG C W, et al. Geographically insensitive spatial-temporal POI recommendation based on heterogeneous graph embedding[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(3): 755-767.
[4] WU Y J, LIAN D F, JIN S W, et al. Graph convolutional networks on user mobility heterogeneous graphs for social relationship inference[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 3898-3904.
[5] ZHANG W, LAI X, WANG J Y. Social link inference via multiview matching network from spatiotemporal trajectories[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(4): 1720-1731.
[6] TRUNG H, VINH T, NGUYEN T, et al. MSC-lbsn: multi-social context-aware hypergraph representation learning for lbsns[J]. lEEE Transactions on Knowledge and Data Engineering, 2022, 2: 2696407048.
[7] LI Y, FAN Z, ZHANG J, et al. Heterogeneous hypergraph neural network for friend recommendation with human mobility[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. New York: ACM, 2022: 4209-4213.
[8] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 855-864.
[9] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. [2024-10-12]. https://arxiv.org/abs/1710.10903.
[10] BACKES M, HUMBERT M, PANG J, et al. walk2friends: inferring social links from mobility profiles[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1943-1957.
[11] YU Y W, WANG H J, LI Z H. Inferring mobility relationship via graph embedding[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 1-21.
[12] ZHOU F, WU B Y, YANG Y, et al. Vec2Link: unifying heterogeneous data for social link prediction[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 1843-1846.
[13] FENG J, ZHANG M Y, WANG H D, et al. DPLink: user identity linkage via deep neural network from heterogeneous mobility data[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 459-469.
[14] YANG D, QU B, YANG J, et al. Revisiting user mobility and social relationships in LBSNs: a hypergraph embedding approach[C]//Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019: 2147-2157.
[15] YANG D Q, QU B Q, YANG J, et al. LBSN2Vec++: heterogeneous hypergraph embedding for location-based social networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(4): 1843-1855.
[16] LI Y K, FAN Z P, YIN D, et al. HMGCL: heterogeneous multigraph contrastive learning for LBSN friend recommendation[J]. World Wide Web, 2023, 26(4): 1625-1648.
[17] QIN G M, SONG L X, YU Y W, et al. Graph structure learning on user mobility data for social relationship inference[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence and the 35th Conference on Innovative Applications of Artificial Intelligence and the 13th Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI, 2023: 4578-4586.
[18] QIN G M, QI J P, WANG B, et al. Multi-relational graph attention network for social relationship inference from human mobility data[C]//Proceedings of the 33rd International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2024: 2315-2323.
[19] DONG Y X, HU Z N, WANG K S, et al. Heterogeneous network representation learning[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 4861-4867.
[20] MARIA E, BUDIMAN E, HAVILUDDIN, et al. Measure distance locating nearest public facilities using haversine and Euclidean methods[J]. Journal of Physics: Conference Series, 2020, 1450(1): 012080.
[21] SADHWANI D, POWARI A, MEHTA N. New, simple and accurate approximation for the Gaussian Q function with applications[J]. IEEE Communications Letters, 2022, 26(3): 518-522.
[22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[23] LIU M H, ZENG A L, CHEN M H, et al. SCINet: time series modeling and forecasting with sample convolution and interaction[C]//Advances in Neural Information Processing Systems 35, 2022: 5816-5828. |