[1] DONG C Q, WENG J, LI M, et al. Privacy-preserving and Byzantine-robust federated learning[J]. IEEE Transactions on Dependable and Secure Computing, 2024, 21(2): 889-904.
[2] WANG R Y, YUAN X M, YANG Z G, et al. RFLPV: a robust federated learning scheme with privacy preservation and verifiable aggregation in IoMT[J]. Information Fusion, 2024, 102: 102029.
[3] WEN J, ZHANG Z X, LAN Y, et al. A survey on federated learning: challenges and applications[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(2): 513-535.
[4] CHAUDHARY R K, KUMAR R, SAXENA N. A systematic review on federated learning system: a new paradigm to machine learning[J]. Knowledge and Information Systems, 2025, 67(2): 1811-1914.
[5] WEI K, LI J, MA C, et al. Personalized federated learning with differential privacy and convergence guarantee[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 4488-4503.
[6] ZHANG L, XU J B, VIJAYAKUMAR P, et al. Homomorphic encryption-based privacy-preserving federated learning in IoT-enabled healthcare system[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2864-2880.
[7] REDDI S, RAO P M, SARASWATHI P, et al. Privacy-preserving electronic medical record sharing for IoT-enabled healthcare system using fully homomorphic encryption, IOTA, and masked authenticated messaging[J]. IEEE Transactions on Industrial Informatics, 2024, 20(9): 10802-10813.
[8] 戴怡然, 张江, 向斌武, 等. 全同态加密技术的研究现状及发展路线综述[J]. 电子与信息学报, 2024, 46(5): 1774-1789.
DAI Y R, ZHANG J, XIANG B W, et al. Overview on the research status and development route of fully homomorphic encryption technology[J]. Journal of Electronics & Information Technology, 2024, 46(5): 1774-1789.
[9] 冯晗, 伊华伟, 李晓会, 等. 推荐系统的隐私保护研究综述[J]. 计算机科学与探索, 2023, 17(8): 1814-1832.
FENG H, YI H W, LI X H, et al. Review of privacy-preserving research in recommendation systems[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1814-1832.
[10] XIONG H, WANG L L, ZHOU Z D, et al. Burn after reading: adaptively secure puncturable identity-based proxy re-encryption scheme for securing group message[J]. IEEE Internet of Things Journal, 2022, 9(13): 11248-11260.
[11] PEI H M, YANG P, LI W H, et al. Proxy re-encryption for secure data sharing with blockchain in Internet of medical things[J]. Computer Networks, 2024, 245: 110373.
[12] SHEN X Y, LUO X, YUAN F, et al. Privacy-preserving multi-party deep learning based on homomorphic proxy re-encryption[J]. Journal of Systems Architecture, 2023, 144: 102983.
[13] FU A M, ZHANG X L, XIONG N X, et al. VFL: a verifiable federated learning with privacy-preserving for big data in industrial IoT[J]. IEEE Transactions on Industrial Informatics, 2022, 18(5): 3316-3326.
[14] GUO X J, LIU Z L, LI J, et al. VeriFL: communication-efficient and fast verifiable aggregation for federated learning[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 1736-1751.
[15] LIU J W, ZHANG J, AHMAD JAN M, et al. A comprehensive privacy-preserving federated learning scheme with secure authentication and aggregation for Internet of medical things[J]. IEEE Journal of Biomedical and Health Informatics, 2024, 28(6): 3282-3292.
[16] XU G W, LI H W, LIU S, et al. VerifyNet: secure and verifiable federated learning[J]. IEEE Transactions on Information Forensics and Security, 2020, 15: 911-926.
[17] CHIU T C, LIN W C, PANG A C, et al. Dual-masking framework against two-sided model attacks in federated learning[C]//Proceedings of the 2021 IEEE Global Communications Conference. Piscataway: IEEE, 2021: 1-6.
[18] LIU J W, JIANG W Y, SUN R, et al. Conditional anonymous remote healthcare data sharing over blockchain[J]. IEEE Journal of Biomedical and Health Informatics, 2023, 27(5): 2231-2242.
[19] LI J L, CHOO K R, ZHANG W G, et al. EPA-CPPA: an efficient, provably-secure and anonymous conditional privacy-preserving authentication scheme for vehicular ad hoc networks[J]. Vehicular Communications, 2018, 13: 104-113.
[20] BONAWITZ K, IVANOV V, KREUTER B, et al. Practical secure aggregation for privacy-preserving machine learning[C]//Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2017: 1175-1191.
[21] FANG C, GUO Y B, WANG N, et al. Highly efficient federated learning with strong privacy preservation in cloud computing[J]. Computers & Security, 2020, 96: 101889.
[22] TSCHANDL P, ROSENDAHL C, KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific Data, 2018, 5: 180161.
[23] ZHU L G, LIU Z J, HAN S. Deep leakage from gradients[C]//Advances in Neural Information Processing Systems 32, 2019: 14747-14756. |