[1] Zhou Z H. Machine learning[M]. Beijing: Tsinghua University Press, 2016. 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
[2] Johan S, Joos V. Least squares support vector machine classi-fiers[J]. Neural Processing Letters, 1999, 3: 293-300.
[3] Edgar O, Robert F, Federico G. Training support vector machines: an application to face detection[C]//Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition, San Juan, Jun 17-19, 1997. Washington: IEEE Computer Society, 1997: 130-136.
[4] Sayan M, Edgar O, Federico G. Nonlinear prediction of chaotic time series using a support vector machine[C]//Proceedings of the 1997 IEEE Workshop on Neural Networks for Signal Processing, Amelia Island, Sep 24-26, 1997. Piscataway: IEEE, 1997: 1125-1132.
[5] Tang Y C, Jin B, Zhang Y Q. Granular support vector machines for medical binary classification problems[C]//Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, La Jolla, Oct 7-8, 2004. Piscataway: IEEE, 2004: 73-78.
[6] Guo H S, Wang W J, Men C Q. A novel learning model-kernel granular support vector machine[C]//Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, Baoding, Jul 12-15, 2009. Piscataway: IEEE, 2009: 930-935.
[7] Tang Y C, Jin B, Zhang Y Q. Granular support vector machines with association rules mining for protein homology prediction[J]. Artificial Intelligence in Medicine, 2005, 35(1): 121-134.
[8] Pang S N, Kasabov N. Discovering the knowledge of association rule over SVM classification trees[C]//Proceedings of the 2008 International Joint Conference on Neural Networks, Part of the IEEE World Congress on Computational Intelligence, Hong Kong, China, Jun 1-6, 2008. Piscataway: IEEE, 2008: 2486-2493.
[9] Stahl D, Pickles A, Elsabbagh M, et al. Novel machine lear-ning methods for ERP analysis: a validation from research on infants at risk for autism[J]. Developmental Neuropsychology, 2012, 37(3): 274-298.
[10] Liang J Y, Bai L, Cao F Y. K-Modes clustering algorithm based on a new distance measure[J]. Journal of Computer Research and Development, 2010, 47(10): 1749-1755. 梁吉业, 白亮, 曹付元. 基于新的距离度量的K-Modes聚类算法[J]. 计算机研究与发展, 2010, 47(10): 1749-1755.
[11] Wu D H, Wang Z L, Chen Y, et al. Mixed-kernel based weighted extreme learning machine for inertial sensor based human activity recognition with imbalanced dataset[J]. Neurocomputing, 2015, 11: 1-15.
[12] Arun K M, Gopal M. A hybrid SVM based decision tree[J]. Pattern Recognition, 2010, 43(12): 3977-3987.
[13] Chen R C, Cheng K F, Hsieh C F. Using rough set and support vector machine for network intrusion detection system[J]. International Journal of Network Security & Its Applications, 2009, 59(2): 465-470.
[14] Zhang Z W, Wang Z Y. Mining overlapping and hierarchical communities in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2015, 421: 25-33.
[15] Cheng F W, Wang W J, Guo H S. Dynamic granular support vector machine learning algorithm[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(4): 372-377. 程凤伟, 王文剑, 郭虎升. 动态粒度SVM学习算法[J]. 模式识别与人工智能, 2014, 27(4): 372-377.
[16] Cheng F W, Wang W J. Hierarchical granular support vector machine algorithm[J]. Journal of Chinese Computer Systems, 2015, 36(8): 1799-1802. 程凤伟, 王文剑. 一种层次粒度支持向量机算法[J]. 小型微型计算机系统, 2015, 36(8): 1799-1802.
[17] Brendan J F, Dellbert D. Clustering by passing messages between data points[J]. Science, 2007, 315(2): 972-976. |