[1] Li X, Wei H W, Zhang H Q. Super-resolution reconstruc-tion of single remote sensing image combined with deep learning[J]. Journal of Image and Graphics, 2018, 23(2): 209-218.李欣, 韦宏卫, 张洪群. 结合深度学习的单幅遥感图像超分辨率重建[J]. 中国图象图形学报, 2018, 23(2): 209-218.
[2] Zou W W W, Yuen P C. Very low resolution face recogni-tion problem[J]. IEEE Transactions on Image Processing, 2010, 21(1): 1-6.
[3] Lei S, Shi Z W, Zou Z X. Super-resolution for remote sens-ing images via local-global combined network[J]. IEEE Geo-science and Remote Sensing Letters, 2017, 14(8): 1243-1247.
[4] Ren H Y, El-Khamy M, Lee J. CT-SRCNN: cascade trained and trimmed deep convolutional neural networks for image super resolution[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Washington: IEEE Computer Society, 2018: 1423-1431.
[5] Zhu S Y, Zeng B, Liu G H, et al. Image interpolation based on non-local geometric similarities[C]//Proceedings of the 2015 IEEE International Conference on Multimedia and Expo, Turin, Jun 29-Jul 3, 2015: 1-6.
[6] Zhang K B, Gao X B, Tao D C, et al. Single image super-resolution with non-local means and steering kernel regres-sion[J]. IEEE Transactions on Image Processing, 2012, 21(11): 4544-4556.
[7] Dong C, Loy C C, He K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
[8] Shi W Z, Caballero J, Huszár F, et al. Real-time single im-age and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 1874-1883.
[9] Kim J, Lee J K, Lee K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 1646-1654.
[10] Lim B, Son S, Kim H, et al. Enhanced deep residual net-works for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, Jul 21-26, 2017. Wash-ington: IEEE Computer Society, 2017: 136-144.
[11] Lai W S, Huang J B, Ahuja N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]//Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5835-5843.
[12] Haris M, Shakhnarovich G, Ukita N. Deep back-projection networks for super-resolution[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recogni-tion, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 1664-1673.
[13] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Genera-tive adversarial nets[C]//Proceedings of the Annual Confer-ence on Neural Information Processing Systems 2014, Mon-treal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680.
[14] Ledig C, Theis L, Huszár F, et al. Photo-realistic single im-age super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Com-puter Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 105-114.
[15] Wang X T, Yu K, Wu S W, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//LNCS 11133: Proceedings of the 2018 European Conference on Com-puter Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 63-79.
[16] Zhang H, Goodfellow I J, Metaxas D N, et al. Self-attention generative adversarial networks[J]. arXiv: 1805.08318, 2018.
[17] Brock A, Donahue J, Simonyan K. Large scale GAN train-ing for high fidelity natural image synthesis[J]. arXiv:1809.11096, 2018.
[18] Miyato T, Kataoka T, Koyama M, et al. Spectral normaliza-tion for generative adversarial networks[J]. arXiv:1802.05957, 2018.
[19] Timofte R, Agustsson E, van Gool L, et al. NTIRE 2017 challenge on single image super-resolution: methods and results[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Hon-olulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1110-1121.
[20] Bevilacqua M, Roumy A, Guillemot C, et al. Neighbor embedding based single-image super-resolution using semi-nonnegative matrix factorization[C]//Proceedings of the 2012 IEEE International Conference on Acoustics, Speech and Sig-nal Processing, Kyoto, Mar 25-30, 2012. Piscataway: IEEE, 2012: 1289-1292.
[21] Yuan Y, Liu S Y, Zhang J W, et al. Unsupervised image super-resolution using cycle-in-cycle generative adversarial networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 701-710. |