[1] YANG Z, ZHOU Z M, LIU Y H. From RSSI to CSI: indoor localization via channel response[J]. ACM Computing Surveys, 2013, 46(2): 1-32.
[2] ZHANG D Q, WANG H, WU D. Toward centimeter-scale human activity sensing with Wi-Fi signals[J]. Computer, 2017, 50(1): 48-57.
[3] WU D, ZHANG D Q, XU C R, et al. Device-free WiFi human sensing: from pattern-based to model-based approaches[J]. IEEE Communications Magazine, 2017, 55(10): 91-97.
[4] WEISER M. The computer for the 21st century[J]. Scientific American, 1991, 265(3): 94-105.
[5] ZHANG D Q, WANG H, WU D. Millimeter-level Wi-Fi con-tactless sensing:from pattern to model[J]. Communications of the CCF, 2018, 14(1): 18-25.
张大庆, 王皓, 吴丹. 毫米级的Wi-Fi无接触感知:从模式到模型[J]. 中国计算机学会通讯, 2018, 14(1): 18-25.
[6] LIU X F, CAO J N, TANG S J, et al. Wi-Sleep: contactless sleep monitoring via WiFi signals[C]//Proceedings of the 2014 IEEE Real-Time Systems Symposium, Rome, Dec 2-5, 2014. Washington: IEEE Computer Society, 2014: 346-355.
[7] LIU J, WANG Y, CHEN Y Y, et al. Tracking vital signs during sleep leveraging off-the-shelf WiFi[C]//Proceedings of the 16th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Hangzhou, Jun 22-25, 2015. New York: ACM, 2015: 267-276.
[8] WANG H, ZHANG D Q, MA J Y, et al. Human respiration detection with commodity WiFi devices: do user location and body orientation matter?[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Sep 12-16, 2016. New York: ACM, 2016: 25-36.
[9] ZHANG F S, ZHANG D Q, XIONG J, et al. From Fresnel diffraction model to fine-grained human respiration sensing with commodity Wi-Fi devices[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Techno-logies, 2018, 2(1): 53.
[10] NIU K, ZHANG F S, XIONG J, et al. Boosting fine-grained activity sensing by embracing wireless multipath effects[C]//Proceedings of the 14th International Conference on Emerging Networking Experiments and Technologies, Heraklion, Dec 4-7, 2018. New York: ACM, 2018: 139-151.
[11] ZENG Y W, WU D, GAO R Y, et al. FullBreathe: full human respiration detection exploiting complementarity of CSI phase and amplitude of WiFi signals[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Techno-logies, 2018, 2(3): 148.
[12] PU Q F, GUPTA S, GOLLAKOTA S, et al. Whole-home gesture recognition using wireless signals[C]//Proceedings of the 19th Annual International Conference on Mobile Com-puting and Networking, Miami, Sep 30-Oct 4, 2013. New York: ACM, 2013: 27-38.
[13] LI H, YANG W, WANG J X, et al. WiFinger: talk to your smart devices with finger-grained gesture[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Sep 12-16, 2016. New York: ACM, 2016: 250-261.
[14] TAN S, YANG J. WiFinger: leveraging commodity WiFi for fine-grained finger gesture recognition[C]//Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Paderborn, Jul 4-8, 2016. New York: ACM, 2016: 201-210.
[15] WANG G H, ZOU Y P, ZHOU Z M, et al. We can hear you with Wi-Fi![J]. IEEE Transactions on Mobile Computing, 2016, 15(11): 2907-2920.
[16] WANG Y X, WU K S, NI L M. WiFall: device-free fall detection by wireless networks[J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 581-594.
[17] WANG H, ZHANG D Q, WANG Y S, et al. RT-Fall: a real-time and contactless fall detection system with commodity WiFi devices[J]. IEEE Transactions on Mobile Computing, 2017, 16(2): 511-526.
[18] WANG W, LIU A X, SHAHZAD M, et al. Understanding and modeling of WiFi signal based human activity recognition[C]//Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, Sep 7-11, 2015. New York: ACM, 2015: 65-76.
[19] WANG W, LIU A X, SHAHZAD M. Gait recognition using wifi signals[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Sep 12-16, 2016. New York: ACM, 2016: 363-373.
[20] WANG Y, LIU J, CHEN Y Y, et al. E-eyes: device-free location-oriented activity identification using fine-grained WiFi signatures[C]//Proceedings of the 20th Annual Inter-national Conference on Mobile Computing and Networking, Maui, Sep 7-11, 2014. New York: ACM, 2014: 617-628.
[21] WU D, ZHANG D Q, XU C R, et al. WiDir: walking direction estimation using wireless signals[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubi-quitous Computing, Heidelberg, Sep 12-16, 2016. New York: ACM, 2016: 351-362.
[22] ZHANG F S, NIU K, XIONG J, et al. Towards a diffraction-based sensing approach on human activity recognition[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(1): 33.
[23] XIONG Z W, ZHANG Y Y, WU F, et al. Computational depth sensing: toward high-performance commodity depth cameras[J]. IEEE Signal Processing Magazine, 2017, 34(3): 55-68.
[24] MEHTA D, SRIDHAR S, SOTNYCHENKO O, et al. VNect: real-time 3D human pose estimation with a single RGB camera[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14.
[25] FU B Y, KAROLUS J, GROSSE-PUPPENDAHL T, et al. Opportunities for activity recognition using ultrasound doppler sensing on unmodified mobile phones[C]//Proceedings of the 2nd International Workshop on Sensor-based Activity Reco-gnition and Interaction, Rostock, Jun 25-26, 2015. New York: ACM, 2015: 1-10.
[26] MAO W G, HE J, QIU L L. CAT: high-precision acoustic motion tracking[C]//Proceedings of the 22nd Annual Inter-national Conference on Mobile Computing and Networking, New York, Oct 3-7, 2016. New York: ACM, 2016: 69-81.
[27] WANG W, LIU A X, SUN K. Device-free gesture tracking using acoustic signals[C]//Proceedings of the 22nd Annual International Conference on Mobile Computing and Net-working, New York, Oct 3-7, 2016. New York: ACM, 2016: 82-94.
[28] YUN S, CHEN Y C, ZHENG H H, et al. Strata: fine-grained acoustic-based device-free tracking[C]//Proceedings of the 15th Annual International Conference on Mobile Systems, Applications, and Services, Niagara Falls, Jun 19-23, 2017. New York: ACM, 2017: 15-28.
[29] LI X, LI S J, ZHANG D Q, et al. Dynamic-music: accurate device-free indoor localization[C]//Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubi-quitous Computing, Heidelberg, Sep 12-16, 2016. New York: ACM, 2016: 196-207.
[30] SEIFELDIN M, SAEED A, KOSBA A E, et al. Nuzzer: a large-scale device-free passive localization system for wireless environments[J]. IEEE Transactions on Mobile Computing, 2013, 12(7): 1321-1334.
[31] XIAO J, WU K S, YI Y W, et al. Pilot: passive device-free indoor localization using channel state information[C]//Pro-ceedings of the 33rd International Conference on Distri-buted Computing Systems, Philadelphia, Jul 8-11, 2013. Washington: IEEE Computer Society, 2013: 236-245.
[32] ABDEL-NASSER H, SAMIR R, SABEK I, et al. MonoPHY: mono-stream-based device-free WLAN localization via phy-sical layer information[C]//Proceedings of the 2013 IEEE Wire-less Communications and Networking Conference, Shanghai, Apr 7-10, 2013. Piscataway: IEEE, 2013: 4546-4551.
[33] XIONG J, SUNDARESAN K, JAMIESON K. Tonetrack: leveraging frequency-agile radios for time-based indoor wire-less localization[C]//Proceedings of the 21st Annual Interna-tional Conference on Mobile Computing and Networking, Paris, Sep 7-11, 2015. New York: ACM, 2015: 537-549.
[34] WANG H, ZHANG D Q, NIU K, et al. MFDL: a multicarrier Fresnel penetration model based device-free localization system leveraging commodity Wi-Fi cards[J]. arXiv:1707. 07514, 2017.
[35] KOTARU M, JOSHI K R, BHARADIA D, et al. Spotfi: decimeter level localization using WiFi[J]. ACM SIGCOMM Computer Communication Review, 2015, 45(4): 269-282.
[36] LI X, ZHANG D Q, LV Q, et al. IndoTrack: device-free indoor human tracking with commodity Wi-Fi[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2017, 1(3): 1-22.
[37] LI X, ZHANG D Q, XIONG J, et al. Training-free human vitality monitoring using commodity Wi-Fi devices[J]. Pro-ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3): 1-25.
[38] ALI K, LIU A X, WANG W, et al. Keystroke recognition using WiFi signals[C]//Proceedings of the 21st Annual Inter-national Conference on Mobile Computing and Networking, Paris, Sep 7-11, 2015. New York: ACM, 2015: 90-102.
[39] HALPERIN D, HU W J, SHETH A, et al. Tool release: gathering 802.11n traces with channel state information[J]. ACM SIGCOMM Computer Communication Review, 2011, 41(1): 53.
[40] NIU K, ZHANG F S, JIANG Y H, et al. WiMorse: a con-tactless morse code text input system using ambient WiFi signals[J]. IEEE Internet of Things Journal, 2019, 6(6): 9993-10008. |