[1] SZKLARCZYK D, GABLE A L, LYON D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Research, 2018, 47(D1): D607-D613.
[2] GEORGE G, PARAMBATH S V, LOKAPPA S B, et al. Construction of Parkinson??s disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes[J]. GENE, 2019, 697: 67-77.
[3] BORGIA A, BORGIA M B, BUGGE K, et al. Extreme disorder in an ultrahigh-affinity protein complex[J]. Nature, 2018, 555(7694): 61-66.
[4] WANG R Q, WANG C X, SUN L Y, et al. A seed-extended algorithm for detecting protein complexes based on density and modularity with topological structure and GO annota-tions[J]. BMC Genomics, 2019, 20(1): 637-645.
[5] ELMSALLATI A, CLARK C, KALITA J. Global alignment of protein-protein interaction networks: a survey[J]. IEEE/ACM Transactions on Computational Biology and Bioin-formatics, 2016, 13(4): 689-705.
[6] ZHANG C, ZHENG W, FREDDOLINO P L, et al. MetaGO: predicting gene ontology of non-homologous proteins through low-resolution protein structure prediction and protein-protein network mapping[J]. Journal of Molecular Biology, 2018, 430(15): 2256-2265.
[7] LEI X J, GAO Y, GUO L. Mining protein complexes based on topology potential weight in dynamic protein-protein in-teraction networks[J]. Acta Electronica Sinica, 2018, 46(1): 145-151.
雷秀娟, 高银, 郭玲. 基于拓扑势加权的动态PPI网络复合物挖掘方法[J]. 电子学报, 2018, 46(1): 145-151.
[8] ZHAO X W, CHENG X D, LYU J W, et al. Identify protein complexes by integrating temporal function continue feature and ant colony clustering on dynamic PPI networks[J]. Jour-nal of Chinese Computer Systems, 2017, 38(6): 1311-1316.
赵学武, 程新党, 吕嘉伟, 等. 融合时序保持特征和蚁群聚类的动态PPI网络复合物识别[J]. 小型微型计算机系统, 2017, 38(6): 1311-1316.
[9] YI L. Dynamic protein complex recognition and conserva-tive complex evolution[D]. Wuhan: Central China Normal University, 2017.
易丽. 动态蛋白质复合物识别与保守复合物进化研究[D]. 武汉: 华中师范大学, 2017.
[10] ZHOU J. Dynamic and conservative protein complex recog-nition based on multi-component data integration[D]. Wuhan: Central China Normal University, 2018.
周锦. 基于多组学数据整合的动态与保守蛋白复合物挖掘研究[D]. 武汉: 华中师范大学, 2018.
[11] LEI X J, WANG F, WU F X, et al. Protein complex identifi-cation through Markov clustering with firefly algorithm on dynamic protein-protein interaction networks[J]. Information Sciences, 2016, 329: 303-316.
[12] DONG S L, WU Z G, SHI P, et al. Quantized control of Markov jump nonlinear systems based on fuzzy hidden Markov model[J]. IEEE Transactions on Cybernetics, 2019, 49(7): 2420-2430.
[13] WANG J X, PENG X Q, PENG W, et al. Dynamic protein interaction network construction and applications[J]. Pro-teomics, 2014, 14(4/5): 338-352.
[14] TU B P, KUDLICKI A, ROWICKA M, et al. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes[J]. Science, 2005, 310(5751): 1152-1158.
[15] ZHAO B H, LI X Y, HU S, et al. Prediction of protein fun-ctions based on essential functional modules mining[J]. Acta Automatica Sinica, 2018, 44(1): 183-192.
赵碧海, 李学勇, 胡赛, 等. 基于关键功能模块挖掘的蛋白质功能预测[J]. 自动化学报, 2018, 44(1): 183-192.
[16] WANG J X, CAI Z, LI M. An improved method based on maximal clique for predicting interactions in protein intera-ction networks[C]//Proceedings of the 2008 International Conference on BioMedical Engineering and Informatics, Sanya, May 28-30, 2008. Washington: IEEE Computer Soc-iety, 2008: 62-66.
[17] YUAN C, ILLINDALA M S, KHALSA A S. Modified Viterbi algorithm based distribution system restoration strategy for grid resiliency[J]. IEEE Transactions on Power Delivery, 2017, 32(1): 310-319.
[18] LEI H J, WEN Y T, YOU Z H, et al. Protein-protein inter-actions prediction via multimodal deep polynomial network and regularized extreme learning machine[J]. IEEE Journal of Biomedical and Health Informatics, 2019, 23(3): 1290-1303.
[19] RUAN P Y, HAYASHIDA M, AKUTSU T, et al. Improving prediction of heterodimeric protein complexes using combi-nation with pairwise kernel[J]. BMC Bioinformatics, 2018, 19(1): 73-84.
[20] PELLEGRINI M, BAGLIONI M, GERACI F. Protein com-plex prediction for large protein interaction networks with the core & peel method[J]. BMC Bioinformatics, 2016, 17(12): 37-58.
[21] HAQUE R, PENKALE S, WAY A. TermFinder: log-likelihood comparison and phrase-based statistical machine translation models for bilingual terminology extraction[J]. Language Resources and Evaluation, 2018, 52(2): 365-400. |