[1] WANG B, HUANG Z Q, CHEN L X. Circular features des-cription: effective method for leaf image retrieval and class-ification[J]. Journal of Software, 2019, 30(4): 1148-1163.
王斌, 黄竹芹, 陈良宵. 圆周特征描述: 有效的叶片图像分类和检索方法[J]. 软件学报, 2019, 30(4): 1148-1163.
[2] KONG J, SUN Q S, XU H, et al. Multi-object classification of remote sensing image based on affine-invariant supervised discrete Hashing[J]. Journal of Software, 2019, 30(4): 914-926.
孔颉, 孙权森, 徐晖, 等. 基于仿射不变离散哈希的遥感图像多目标分类[J]. 软件学报, 2019, 30(4): 914-926.
[3] LIU Y, LEI Y B, FAN J L, et al. Survey on image classifica-tion technology based on small sample learning[J]. Acta Auto-matica Sinica, 2021, 47(2): 297-315.
刘颖, 雷研博, 范九伦, 等. 基于小样本学习的图像分类技术综述[J]. 自动化学报, 2021, 47(2): 297-315.
[4] CHEN Z, WU X J, CAI Y H, et al. Sparse non-negative transition subspace learning for image classification[J]. Signal Processing, 2021, 183(8): 107988.
[5] CHEN M?S, HUANG L, WANG C?D, et?al. Multiview sub-space clustering with grouping effect[J]. IEEE Transactions on Cybernetics, 2020. DOI:10.1109/TCYB.2020.3035043.
[6] ZHAO P, WANG C Y, ZHANG S Y, et al. A zero-shot image classification method based on subspace learning with the fusion of reconstruction[J]. Chinese Journal of Computers, 2021, 44(2): 409-421.
赵鹏, 汪纯燕, 张思颖, 等. 一种基于融合重构的子空间学习的零样本图像分类方法[J]. 计算机学报, 2021, 44(2): 409-421.
[7] WAN J, WU F, HE Y B, et al. Clustering algorithm for high-dimensional data under new dimensionality reduction criteria[J]. Journal of Frontiers of Computer Science and Techno-logy, 2020, 14(1): 96-107.
万静, 吴凡, 何云斌, 等. 新的降维标准下的高维数据聚类算法[J]. 计算机科学与探索, 2020, 14(1): 96-107.
[8]?COVER T P?H. Nearest neighbor pattern classification[J]. IEEE Transactions on Circuits and Systems for Video Tech-nology, 2004, 14(1): 4-20.
[9] WRIGHT J, YANG A Y, GANESH A, et al. Robust face reco-gnition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(2): 210-227.
[10] NASEEM I, TOGNERI R, BENNAMOUN M. Linear reg-ression for face recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(11): 2106-2112.
[11] XU J, AN W, ZHANG L, et al. Sparse, collaborative, or non-negative representation: which helps pattern classification?[J]. Pattern Recognition, 2019, 88: 679-688.
[12] HOERL A?E, KENNARD R W. Ridge regression: biased estimation for nonorthogonal problems[J]. Technometrics, 1970, 12(1): 55-67.
[13] XIANG S M, Nie F P, MENG G F, et al. Discriminative least squares regression for multiclass classification and feature selection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(11): 1738-1754.
[14] ZHANG X?Y, WANG L, XIANG S, et?al. Retargeted least squares regression algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(9): 2206-2213.
[15] FANG X Z, TENG S H, LAI Z H, et?al. Robust latent sub-space learning for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(6): 2502-2515.
[16] CANDE E?J, LI X D, MA Y, et?al. Robust principal com-ponent analysis[J]. Journal of the ACM, 2011, 58(3): 11.
[17] CHEN Z, WU X?J, KITTLER J. Low-rank discriminative least squares regression for image classification[J]. Signal Processing, 2020, 173: 107485.
[18] LU C?S. Solution of the matrix equation AX+XB = C[J]. Electronics Letters, 2007, 7(8): 185-186.
[19] BOYD S, PARIKH N, CHU E, et al. Distributed optimiza-tion and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends in Machine learning, 2011, 3(1): 1-122.
[20] ZHAO J, FENG Q, ZHAO L. Alternating direction and Taylor expansion minimization algorithms for unconstrained nuclear norm optimization[J]. Numerical Algorithms, 2019, 82(1): 371-396.
[21] CHEN C, HE B, YE Y, et?al. The direct extension of ADMM for multi-block convex minimization problems is not neces-sarily convergent[J]. Mathematical Programming, 2016, 155(1/2): 57-79.
[22] LIU G, LIN Z, YAN S, et?al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
[23] ZHANG F L, YANG J, TAI Y, et?al. Double nuclear norm-based matrix decomposition for occluded image recovery and background modeling[J]. IEEE Transactions on Image Processing, 2015, 24(6): 1956-1966.
[24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[25] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Com-puter Society, 2016: 770-778.
[26] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[27] CHOLLET F. Xception: deep learning with depthwise separ-able convolutions[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Ho-nolulu,?Jul 21-26, 2017. Washington: IEEE Computer So-ciety, 2017: 1251-1258.
[28] MARTINEZ A, BENAVENTE R. The AR face database[R]. Universitat Autonoma de Barcelona, 1998.
[29] GEORGHIADES A?S, BELHUMEUR P?N, KRIEGMAN D?J. From few to many: illumination cone models for face recognition under variable lighting and pose[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2002, 23(6): 643-660.
[30] SIM T, BAKER S, BSAT M. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 25(12): 1615-1618.
[31] ZHANG D, GUO Z, LU G, et?al. An online system of multi-spectral palmprint verification[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59(2): 480-490.
[32] YU P?F, ZHOU H, LI H?Y. Personal identification using finger-knuckle-print based on local binary pattern[J]. Applied Mechanics & Materials, 2014, 441: 703-706.
[33] NENE S A. Columbia object image library(COIL-20)[R]. Columbia University, 1996.
[34] RALLINGS C, THRASHER M, GUNTER C, et?al. The FERET database and evaluation procedure for face-recognition algorithms[J]. Image and Vision Computing, 1998, 16(5): 295-306. |