[1] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advanced in
Engineering Software, 2014, 69(3): 46-61.
[2] HE J F, FU Z, YI S L, et al.
Image segmentation with multi-threshold of gray-level & gradient-magnitude
entropy based on genetic algorithm[J]. Journal of Frontiers of Computer Science
and Technology, 2015, 9(8): 995-1003.
贺建峰, 符增, 易三莉, 等.
基于遗传算法的灰度-梯度熵多阈值图像分割[J]. 计算机科学与探索, 2015, 9(8): 995-1003.
[3] JIANG X K, FAN Y
Q, WANG W. BP neural network camera calibration based on particle swarm
optimization genetic algorithm[J]. Journal of Frontiers of Computer Science and
Technology, 2014, 8(10): 1254-1262.
江祥奎, 范永青, 王婉. 基于粒子群遗传算法的BP神经网络摄像机标定[J].
计算机科学与探索, 2014, 8(10): 1254-1262.
[4] MI A Z, LU Y. Classifier selection
method with hybrid diversity measure[J]. Journal of Frontiers of Computer
Science and Technology, 2018, 12(9): 1522-1530.
米爱中, 陆瑶.
使用混合差异性度量的分类器选择方法[J]. 计算机科学与探索, 2018, 12(9): 1522-1530.
[5] ZHENG M, ZHUO M
G, ZHANG S G, et al. Reconstruction for gene regulatory network based on hybrid
parallel genetic algorithm and threshold value method[J]. Journal of Jilin
University (Engineering and Technology Edition), 2017, 47(2): 624-631.
郑明,
卓慕瑰, 张树功, 等. 基于混合并行遗传算法和阈值限定法的基因调控网络构建[J]. 吉林大学学报(工学版), 2017, 47(2):
624-631.
[6] WANG M, TAN Y S. Emergency dispatch of network public resources
on cloud computing platform[J]. Computer Simulation, 2018, 35(2):
371-374.
王猛, 谭跃生. 云计算平台网络公共资源应急调度仿真研究[J]. 计算机仿真, 2018, 35(2): 371-374.
[7]
LIU Z H, XUE Y, ZHOU C, et al. Population initialization improvement of robot
path planning based on genetic algorithm[J]. Machine Tool & Hydraulics,
2019, 47(21): 5-8.
刘志海, 薛媛, 周晨, 等. 基于遗传算法的机器人路径规划的种群初始化改进[J]. 机床与液压, 2019,
47(21): 5-8.
[8] GUO X J, GUO C X, BAI L J. Improved genetic algorithm using
semi-initialization and probabilistic sidturbance strategy[J]. Application
Research of Computers, 2019, 36(12): 3670- 3673.
郭晓金, 郭彩杏, 柏林江.
采用半初始化和概率扰动策略改进的遗传算法[J]. 计算机应用研究, 2019, 36(12): 3670-3673.
[9] PEI X B, ZHANG
C H. An imrpoved puzzle-based genetic algorithm for solving permutation
flow-shop scheduling problems[J]. CAAI Transactions on Intelligent Systems,
2019, 14(3): 541-550.
裴小兵, 张春花. 应用改进区块遗传算法求解置换流水车间调度问题[J]. 智能系统学报, 2019,
14(3): 541-550.
[10] DONG L L, GONG G H, LI N, et al. Adaptive parallel
sim-ulated annealing genetic algorithms based on cloud models[J]. Journal of
Beijing University of Aeronautics and Astro-nautics, 2011, 37(9):
1132-1136.
董丽丽, 龚光红, 李妮, 等. 基于云模型的自适应并行模拟退火遗传算法[J]. 北京航空航天大学学报, 2011, 37(9):
1132-1136.
[11] ZHOU Y, ZHOU L S, WANG Y, et al. Application of
multiple-population genetic algorithm in optimizing the train-set cir-culation
plan problem[J]. Complexity, 2017: 3717654.
[12] HINTON G E, NOWLAN S J. How
learning can guide evolution[J]. Complex Systems, 1987, 1(3): 495-502.
[13]
TANG W B, CHEN Y N, ZHANG M. An energy balanced routing algorithm with simplex
method[J]. Computer Tech-nology and Development, 2019, 29(3): 55-59.
汤文兵,
陈亚楠, 张牧. 一种引入单纯形法的能量均衡路由算法[J]. 计算机技术与发展, 2019, 29(3): 55-59.
[14] YU X M, SUN
X H, LIU L P, et al. A phase unwrapping algorithm based on improved stimulated
annealing genetic algorithm for interferometric SAR[J]. Computer Applications
and Software, 2016, 33(10): 230-232.
于向明, 孙学宏, 刘丽萍, 等.
基于改进模拟退火遗传算法的INSAR相位解缠算法[J]. 计算机应用与软件, 2016, 33(10): 230-232.
[15] ZHANG G J,
WU Z H, LIU X Y. Parallel genetic algorithm based on learning mechanism[J].
Journal of Computer App-lications, 2005, 25(2): 374-376.
张桂娟, 武兆慧, 刘希玉.
一种基于学习机制的并行遗传算法[J]. 计算机应用, 2005, 25(2): 374-376.
[16] HE W W, WANG J L, HU L
S. The improvement and app-lication of real-coded multiple-population genetic
algorithm[J]. Chinese Journal of Geophysics, 2009, 52(10): 2644-2651.
何委微,
王家林, 胡龙胜. 实数编码多种群遗传算法的改进及应用[J]. 地球物理学报, 2009, 52(10): 2644-2651.
[17] LI L Y,
TANG Y B, LIU J X, et al. Application of the multiple population genetic
algorithm in optimum design of air-core permanent magnet linear synchronous
motors[J]. Proceedings of the CSEE, 2013, 33(15): 69-77.
李立毅, 唐勇斌, 刘家曦, 等.
多种群遗传算法在无铁心永磁直线同步电机优化设计中的应用[J]. 中国电机工程学报, 2013, 33(15): 69-77.
[18] HOLLAND J
H. Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control and artificial intelligence[M]. 2nd ed.
Cambridge: MIT Press, 1992.
[19] MA H W, CHEN F S. Optimal arrangement of
dampers based on coarse-grained parallel genetic algorithm[J]. Journal of South
China University of Technology (Natural Science Edition), 2019, 47(11):
104-111.
马宏伟, 陈丰收. 基于粗粒度并行遗传算法的阻尼器优化布置[J]. 华南理工大学学报(自然科学版), 2019, 47(11):
104-111.
[20] YANG J S, WANG Y, LI J, et al. Solving intuitionistic fuzzy
multi-objection programming by improved genetic algorithm[J]. Journal of
Detection & Control, 2017, 39(5): 96-101.
杨进帅, 王毅, 李进, 等.
求解直觉模糊多目标规划的改进遗传算法[J]. 探测与控制学报, 2017, 39(5): 96-101.
[21] CORRêA H P, DE
CARVALHO V R R, VIEIRA F H T, et al. Reliability based genetic algorithm applied
to allocation of fiber optics links for power grid automation[J]. Energies,
2019, 12(11): 1-26.
[22] XIAO J, PACHL J, LIN B L, et al. Solving the
block-to-train assignment problem using the heuristic approach based on the
genetic algorithm and tabu search[J]. Transportation Research Part B:
Methodological, 2018, 108: 148-171.
|