[1] CHAO G, SUN S, BI J. A survey on multi-view clustering[J]. arXiv:1712.06246, 2017.
[2] FAN Y, LIANG J, HE R, et al. Robust localized multi-view subspace clustering[J]. arXiv:1705.07777, 2017.
[3] CLEUZIOU G, EXBRAYAT M, MARTIN L, et al. CoFKM: a centralized method for multiple-view clustering[C]//Proceedings of the 9th IEEE International Conference on Data Mining, Miami, Dec 6-9, 2009. Washington: IEEE Computer Society, 2009: 752-757.
[4] LIU X, JI S, GL?NZEL W, et al. Multiview partitioning via tensor methods[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(5): 1056-1069.
[5] CHANG Y S, NIE F, WANG M Y. Multiview feature analysis via structured sparsity and shared subspace discovery[J]. Neural Computation, 2017, 29(7): 1986-2003.
[6] XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 2149-2155.
[7] LIU J, WANG C, GAO J, et al. Multi-view clustering via joint nonnegative matrix factorization[C]//Proceedings of the 13th SIAM International Conference on Data Mining, Austin, May 2-4, 2013. Philadelphia: SIAM, 2013: 252-260.
[8] SHEN B, SI L. Non-negative matrix factorization clustering on multiple manifolds[C]//Proceedings of the 24th AAAI Conference on Artificial Intelligence, Atlanta, Jul 11-15, 2010. Menlo Park: AAAI, 2010: 575-580.
[9] TRIVEDI A, RAI P, DAUMé III H, et al. Multiview clustering with incomplete views[C]//NIPS Workshop, 2010, 224.
[10] GAO H, PENG Y, JIAN S. Incomplete multi-view clustering [C]//Proceedings of the 9th IFIP TC 12 International Conference on Intelligent Information Processing, Melbourne, Nov 18-21, 2016. Berlin, Heidelberg: Springer, 2016: 245-255.
[11] LI S Y, JIANG Y, ZHOU Z H. Partial multi-view clustering[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec, Jul 27-31, 2014. Menlo Park: AAAI, 2014.
[12] ZHAO H D, LIU H F, FU Y. Incomplete multi-modal visual data grouping[C]//Proceedings of the 25th International Joint Conference on Artificial Intelligence, New York, Jul 9-15, 2016. Menlo Park: AAAI, 2016: 2392-2398.
[13] HU M, CHEN S. Doubly aligned incomplete multi-view clustering[J]. arXiv:1903.02785, 2019.
[14] SHAO W X, HE L F, PHILIP S Y. Multiple incomplete views clustering via weighted nonnegative matrix factorization with [L2,1] regularization[C]//LNCS 9284: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, Porto, Sep 7-11, 2015. Berlin, Heidelberg: Springer, 2015: 318-334.
[15] SHAO W X, HE L F, LU C T, et al. Online multi-view clustering with incomplete views[C]//Proceedings of the 2016 IEEE International Conference on Big Data, Washington, Dec 5-8, 2016. Washington: IEEE Computer Society, 2016: 1012-1017.
[16] WEN J, ZHANG Z, XU Y, et al. Incomplete multi-view clustering via graph regularized matrix factorization[C]//LNCS 11132: Proceedings of the 2018 European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2018: 593-608.
[17] WEN J, XU Y, LIU H. Incomplete multiview spectral clustering with adaptive graph learning[J]. IEEE Transactions on Cybernetics, 2020, 50(4): 1418-1429.
[18] WANG H, ZONG L, LIU B, et al. Spectral perturbation meets incomplete multi-view data[J]. arXiv:1906.00098, 2019.
[19] Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis[M]. New York: Cambridge University Press, 2004.
[20] ZHANG D Q, ZHOU Z H, CHEN S C. Adaptive kernel principal component analysis with unsupervised learning of kernels[C]//Proceedings of the 6th IEEE International Conference on Data Mining, Hong Kong, China, Dec 18-22, 2006. Washington: IEEE Computer Society, 2006: 1178-1182.
[21] BELKIN M, NIYOGI P. Laplacian Eigenmaps and spectral techniques for embedding and clustering[C]//Proceedings of the Neural Information Processing Systems: Natural and Synthetic, Vancouver, Dec 3-8, 2001. Cambridge: MIT Press, 2002: 585-591.
[22] SINGH D, ROY D, MOHAN C K. DiP-SVM: distribution preserving kernel support vector machine for big data[J]. IEEE Transactions on Big Data, 2016, 3(1): 79-90.
[23] YANG J, FRANGI A F, YANG J, et al. KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(2): 230-244.
[24] YIN Q Y, WU S, WANG L. Incomplete multi-view clustering via subspace learning[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 383-392.
[25] AN S N, YUN J M, CHOI S. Multiple kernel nonnegative matrix factorization[C]//Proceedings of the 2011 IEEE International Conference on Acoustics, Speech, and Signal Processing, Prague, May 22-27, 2011. Piscataway: IEEE, 2011: 1976-1979.
[26] ZHANG D Q, ZHOU Z H, CHEN S C. Non-negative matrix factorization on kernels[C]//LNCS 4099: Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, Aug 7-11, 2006. Berlin, Heidelberg: Springer, 2006: 404-412.
[27] LEE H, CICHOCKI A, CHOI S. Kernel nonnegative matrix factorization for spectral EEG feature extraction[J]. Neurocomputing, 2009, 72: 3182-3190.
[28] YANG L, JING L, LIU B, et al. Common latent space identification for heterogeneous co-transfer clustering[J]. Neurocomputing, 2017, 269: 29-39.
[29] ZHOU D, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]//Proceedings of the Neural Information Processing Systems. Cambridge: MIT Press, 2003: 321-328.
[30] WANG X Z, AN S F. Research on learning weights of fuzzy production rules based on maximum fuzzy entropy[J]. Journal of Computer Research Development, 2006, 43(4): 673-678.
[31] DENG Z H, WANG S T, WU X S, et al. Robust maximum entropy clustering algorithm RMEC and its outlier labeling[J]. Engineering Science, 2004, 6(9): 38-45.
[32] BOYD S, VANDENBERGHE L. Convex optimization[M]. New York: Cambridge University Press, 2004.
[33] CAI X, NIE F P, HUANG H. Multi-view k-means clustering on big data[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 2598-2604. |