[1] HUANG Y, SHEKHAR S, XIONG H. Discovering colocation patterns from spatial data sets: a general approach[J]. IEEE Transactions on Knowledge and Data Engineering, 2004, 16 (12): 1472-1485.
[2] YOO J S, SHEKHAR S, SMITH J, et al. A partial join approach for mining co-location patterns[C]//Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, Washington, Nov 12-13, 2004. New York: ACM, 2004: 241-249.
[3] YOO J S, SHEKHAR S, CELIK M. A join-less approach for co-location pattern mining: a summary of results[C]//Procee-dings of the 2005 IEEE International Conference on Data Mining, Houston, Nov 27-30, 2005. Washington: IEEE Com-puter Society, 2005: 813-816.
[4] WANG L Z, BAO Y Z, LU J, et al. A new join-less approach for co-location pattern mining[C]//Proceedings of the 8th IEEE International Conference on Computer and Information Tech-nology, Sydney, Jul 8-11, 2008. Washington: IEEE Computer Society, 2008: 197-202.
[5] WANG L Z, BAO Y Z, LU Z Y. Efficient discovery of spatial co-location patterns using the iCPI-tree[J]. The Open Infor-mation Systems Journal, 2009, 3(2): 69-80.
[6] OUYANG Z P, WANG L Z, CHEN H M. Mining spatial co-location patterns for fuzzy objects[J]. Chinese Journal of Com-puters, 2011, 34(10): 1947-1955.
欧阳志平, 王丽珍, 陈红梅. 模糊对象的空间Co-location模式挖掘研究[J]. 计算机学报, 2011, 34(10): 1947-1955.
[7] YANG P, WANG L, WANG X. A parallel spatial co-location pattern mining approach based on ordered clique growth[C]//LNCS 10827: Proceedings of Database Systems for Advanced Applications, Gold Coast, May 21-24, 2018. Berlin, Heidelberg: Springer, 2018: 734-742.
[8] WANG X X, WANG L Z, CHEN H M, et al. Mining spatial high utility co-location patterns based on feature utility ratio[J]. Chinese Journal of Computers, 2019, 42(8): 1721-1738.
王晓璇, 王丽珍, 陈红梅, 等. 基于特征效用参与率的空间高效用co-location模式挖掘方法[J]. 计算机学报, 2019, 42(8): 1721-1738.
[9] YANG P Z, WANG L Z, WANG X X, et al. An effective approach on mining co-location patterns from spatial databases with rare features[C]//Proceedings of the 20th IEEE Interna-tional Conference on Mobile Data Management, Hong Kong, China, Jun 10-13, 2019. Piscataway: IEEE, 2019: 53-62.
[10] WANG L Z, BAO X G, CHEN H M, et al. Effective lossless condensed representation and discovery of spatial co-location patterns[J]. Information Sciences, 2018, 436/437: 197-213.
[11] WANG L Z, BAO X G, ZHOU L H. Redundancy reduction for prevalent co-location patterns[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(1): 142-155.
[12] HU X, WANG L Z, ZHOU L H, et al. Mining spatial maximal co-location patterns[J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(2): 150-160.
胡新, 王丽珍, 周丽华, 等. 空间极大co-location模式挖掘研究[J]. 计算机科学与探索, 2014, 8(2): 150-160.
[13] WU X X, ZHANG C Q, ZHANG S C. Efficient mining of both positive and negative association rules[J]. ACM Trans-actions on Information Systems, 2004, 22(3): 381-405.
[14] ZHENG Z G, ZHAO Y C, ZUO Z Y, et al. Negative-GSP: an efficient method for mining negative sequential patterns[C]//Proceedings of the 8th Australasian Data Mining Con-ference, Melbourne, Dec, 2009. Australian Computer Society, 2009: 63-67.
[15] CAO L B, DONG X J, ZHENG Z G. e-NSP: efficient negative sequential pattern mining[J]. Artificial Intelligence, 2016, 235: 156-182.
[16] DONG X J, GONG Y S, CAO L B. F-NSP+: a fast negative sequential patterns mining method with self-adaptive data storage[J]. Pattern Recognition, 2018, 84: 13-27.
[17] JIANG Y, WANG L Z, LU Y, et al. Discovering both positive and negative co-location rules from spatial data sets[C]//Proceedings of the 2nd International Conference on Software Engineering and Data Mining, Chengdu, Jun 23-25, 2010. Piscataway: IEEE, 2010: 398-403.
[18] SHEKHAR S, HUANG Y. Discovering spatial co-location patterns: a summary of results[C]//LNCS 2121: Proceedings of the 7th International Symposium on Advances in Spatial and Temporal Databases, Redondo Beach, Jul 12-15, 2001. Berlin, Heidelberg: Springer, 2001: 236-256. |