Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (1): 163-175.DOI: 10.3778/j.issn.1673-9418.2007042

• Artificial Intelligence • Previous Articles     Next Articles

Bearing Vibration Abnormal Detection Based on Improved Autoencoder Network

LI Beibei+(), PENG Li   

  1. School of Internet of Things Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-07-07 Revised:2020-09-04 Online:2022-01-01 Published:2020-09-15
  • About author:LI Beibei, born in 1995, M.S. candidate. His research interests include anomaly data detection and uncertain data clustering.
    PENG Li, born in 1967, Ph.D., professor, Ph.D. supervisor, member of CAAI and CCF. His research interests include visual Internet of things, action recognition and deep learning.
  • Supported by:
    National Key Research and Development Program of China(2018YFD0400902);National Natural Science Foundation of China(61873112)

基于改进自编码网络的轴承振动异常检测

李贝贝+(), 彭力   

  1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 通讯作者: + E-mail: jnlibeibei1995@163.com
  • 作者简介:李贝贝(1995—),男,山东滨州人,硕士研究生,主要研究方向为异常数据检测、不确定数据聚类。
    彭力(1967—),男,河北唐山人,博士,教授,博士生导师,CAAI会员,CCF会员,主要研究方向为视觉物联网、行为识别、深度学习。
  • 基金资助:
    国家重点研发计划(2018YFD0400902);国家自然科学基金(61873112)

Abstract:

In recent years, autoencoders and neural network technologies have been widely studied and applied to abnormal data detection problems of industrial data such as bearing vibration, but there are still problems such as large training data, network parameter initialization, low training efficiency, poor detection effect and so on. To solve such problems, this paper presents an anomaly data detection method combining Mahalanobis distance and autoencoder network. There is a certain correlation between bearing vibration data characteristics, so the Mahalanobis distance of the data is used to quickly detect some abnormal data, which reduces the amount of training data for the self-encoding network. In this research, the autoencoder and the classifier are combined to construct the autoencoder network, which solves the problem of network parameter initialization and significantly improves the training efficiency. The Mahalanobis distance of the data is added to the data features, which improves the anomaly detection effect of the autoencoder network. The sparseness restriction is added to the autoencoder, and a structure that first enhances the dimensionality and then encodes samples is constructed. The structure enhances the feature learning ability and convergence of the autoencoder. Experimental results show that the method presented has better detection results than other abnormal detection methods for low-dimensional bearing vibration data, and it has certain stability and generalization ability.

Key words: autoencoder, bearing vibration, abnormal detection, Mahalanobis distance, autoencoder network

摘要:

近年来,自编码器和神经网络技术已被广泛研究并应用于轴承振动等工业数据的异常检测问题上,但仍存在着训练数据量大、网络参数初始化、训练效率较低、异常检测效果较差等问题。为解决上述问题,提出了一种结合马氏距离和自编码网络的异常检测方法。利用轴承振动数据特征之间具有一定相关性的特点,通过数据的马氏距离快速检测出部分异常数据,减少了自编码网络的训练数据量;用自编码器结合分类器构建自编码网络,解决了网络参数初始化问题并且显著提高了训练效率;将数据的马氏距离作为特征加入训练中提升了自编码网络的异常检测效果;在自编码器中加入稀疏性限制并构造先升维再编码的结构,增强了自编码器的特征学习能力和收敛性。实验结果表明,针对低维轴承振动数据,提出的方法较其他异常检测方法具有较好的检测效果且具有一定的稳定性和泛化能力。

关键词: 自编码器, 轴承振动, 异常检测, 马氏距离, 自编码网络

CLC Number: