Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (11): 2537-2546.DOI: 10.3778/j.issn.1673-9418.2104081
• Artificial Intelligence • Previous Articles Next Articles
XU Zhengxiang1,2, WANG Ying1,2, WANG Hongji3, WANG Xin3,+()
Received:
2021-04-12
Revised:
2021-06-04
Online:
2022-11-01
Published:
2021-06-08
About author:
XU Zhengxiang, born in 1996, M.S. candidate. His research interests include network representation, graph summarization and graph clustering.Supported by:
通讯作者:
+ E-mail: xinwang@jlu.edu.cn作者简介:
徐正祥(1996—),男,河南信阳人,硕士研究生,主要研究方向为网络表示、图摘要、图聚类。基金资助:
CLC Number:
XU Zhengxiang, WANG Ying, WANG Hongji, WANG Xin. Feature-Enhanced Latent Summarization Model of Heterogeneous Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2537-2546.
徐正祥, 王英, 汪洪吉, 王鑫. 基于特征加强的异构网络潜在摘要模型[J]. 计算机科学与探索, 2022, 16(11): 2537-2546.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104081
Dataset | Nodes | Edges | Node type | Graph type |
---|---|---|---|---|
Hhar3 | 10 299 | 30 897 | 6 | unweighted |
Hhar10 | 10 299 | 102 988 | 6 | unweighted |
Reut3 | 10 000 | 30 006 | 4 | unweighted |
Reut10 | 10 000 | 100 000 | 4 | unweighted |
Movie | 28 138 | 286 739 | 3 | unweighted |
American | 6 386 | 217 662 | 1 | weighted |
Table 1 Dataset
Dataset | Nodes | Edges | Node type | Graph type |
---|---|---|---|---|
Hhar3 | 10 299 | 30 897 | 6 | unweighted |
Hhar10 | 10 299 | 102 988 | 6 | unweighted |
Reut3 | 10 000 | 30 006 | 4 | unweighted |
Reut10 | 10 000 | 100 000 | 4 | unweighted |
Movie | 28 138 | 286 739 | 3 | unweighted |
American | 6 386 | 217 662 | 1 | weighted |
Dataset | Metric | GF | HOPE | LP | LLE | Dwalk | LINE | SDNE | S2vec | N2vec | MLS | FELS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hhar3 | AUC | 73.61 | 67.45 | 71.63 | 48.41 | 69.64 | 61.97 | 63.13 | 50.37 | 67.75 | 95.87 | 97.30 |
ACC | 73.58 | 67.72 | 72.06 | 48.24 | 69.60 | 62.46 | 63.15 | 50.70 | 67.78 | 96.01 | 97.22 | |
Hhar10 | AUC | 77.07 | 63.31 | 64.48 | 49.25 | 64.99 | 62.17 | 60.79 | 49.69 | 64.33 | 95.13 | 96.17 |
ACC | 77.80 | 62.55 | 64.74 | 49.11 | 65.44 | 61.49 | 59.88 | 50.24 | 64.45 | 95.15 | 96.05 | |
Reut3 | AUC | 67.04 | 49.02 | 50.61 | 50.43 | 50.49 | 49.60 | 50.74 | 49.72 | 51.18 | 92.44 | 94.12 |
ACC | 66.35 | 49.81 | 50.77 | 49.89 | 50.71 | 49.25 | 51.26 | 49.93 | 50.99 | 92.51 | 93.80 | |
Reut10 | AUC | 70.16 | 50.10 | 50.39 | 50.04 | 50.08 | 50.01 | 50.18 | 49.76 | 49.63 | 83.23 | 83.94 |
ACC | 70.34 | 49.84 | 49.87 | 49.87 | 49.72 | 50.13 | 50.02 | 49.43 | 48.89 | 83.56 | 84.04 | |
Movie | AUC | 50.50 | 49.20 | 66.10 | OOT | 45.03 | 50.70 | 54.75 | 60.40 | 56.57 | 82.78 | 85.59 |
ACC | 54.69 | 49.54 | 65.83 | OOT | 45.36 | 50.77 | 54.33 | 60.13 | 56.37 | 82.33 | 85.53 | |
American | AUC | 49.83 | 50.05 | 49.83 | OOT | 50.21 | 50.62 | 50.11 | 49.91 | 50.30 | 79.52 | 80.52 |
ACC | 49.15 | 50.57 | 50.56 | OOT | 50.17 | 51.25 | 50.92 | 50.14 | 51.03 | 79.20 | 80.98 |
Table 2
Dataset | Metric | GF | HOPE | LP | LLE | Dwalk | LINE | SDNE | S2vec | N2vec | MLS | FELS |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hhar3 | AUC | 73.61 | 67.45 | 71.63 | 48.41 | 69.64 | 61.97 | 63.13 | 50.37 | 67.75 | 95.87 | 97.30 |
ACC | 73.58 | 67.72 | 72.06 | 48.24 | 69.60 | 62.46 | 63.15 | 50.70 | 67.78 | 96.01 | 97.22 | |
Hhar10 | AUC | 77.07 | 63.31 | 64.48 | 49.25 | 64.99 | 62.17 | 60.79 | 49.69 | 64.33 | 95.13 | 96.17 |
ACC | 77.80 | 62.55 | 64.74 | 49.11 | 65.44 | 61.49 | 59.88 | 50.24 | 64.45 | 95.15 | 96.05 | |
Reut3 | AUC | 67.04 | 49.02 | 50.61 | 50.43 | 50.49 | 49.60 | 50.74 | 49.72 | 51.18 | 92.44 | 94.12 |
ACC | 66.35 | 49.81 | 50.77 | 49.89 | 50.71 | 49.25 | 51.26 | 49.93 | 50.99 | 92.51 | 93.80 | |
Reut10 | AUC | 70.16 | 50.10 | 50.39 | 50.04 | 50.08 | 50.01 | 50.18 | 49.76 | 49.63 | 83.23 | 83.94 |
ACC | 70.34 | 49.84 | 49.87 | 49.87 | 49.72 | 50.13 | 50.02 | 49.43 | 48.89 | 83.56 | 84.04 | |
Movie | AUC | 50.50 | 49.20 | 66.10 | OOT | 45.03 | 50.70 | 54.75 | 60.40 | 56.57 | 82.78 | 85.59 |
ACC | 54.69 | 49.54 | 65.83 | OOT | 45.36 | 50.77 | 54.33 | 60.13 | 56.37 | 82.33 | 85.53 | |
American | AUC | 49.83 | 50.05 | 49.83 | OOT | 50.21 | 50.62 | 50.11 | 49.91 | 50.30 | 79.52 | 80.52 |
ACC | 49.15 | 50.57 | 50.56 | OOT | 50.17 | 51.25 | 50.92 | 50.14 | 51.03 | 79.20 | 80.98 |
Dataset | Nodes | Edges | Node type | Graph type | G/MB | EMB/MB | FELS/MB |
---|---|---|---|---|---|---|---|
Yahoo | 100 058 | 1 057 050 | 2 | unweighted | 74 | 91 | 9 |
Digg | 283 183 | 4 742 055 | 2 | unweighted | 109 | 321 | 9 |
Dbpedia | 495 940 | 921 710 | 4 | unweighted | 13 | 448 | 16 |
Bibsonomy | 977 914 | 3 754 828 | 3 | weighted | 178 | 883 | 16 |
Table 3 Comparison of storage space
Dataset | Nodes | Edges | Node type | Graph type | G/MB | EMB/MB | FELS/MB |
---|---|---|---|---|---|---|---|
Yahoo | 100 058 | 1 057 050 | 2 | unweighted | 74 | 91 | 9 |
Digg | 283 183 | 4 742 055 | 2 | unweighted | 109 | 321 | 9 |
Dbpedia | 495 940 | 921 710 | 4 | unweighted | 13 | 448 | 16 |
Bibsonomy | 977 914 | 3 754 828 | 3 | weighted | 178 | 883 | 16 |
Dataset | AUC/% | ||
---|---|---|---|
Hhar3 | 96.43 | 97.30 | 97.42 |
Hhar10 | 95.13 | 96.17 | 96.38 |
Reut3 | 93.42 | 94.12 | 94.07 |
Reut10 | 84.04 | 83.94 | 83.39 |
Movie | 86.54 | 85.59 | 83.70 |
American | 79.88 | 80.52 | 80.29 |
Table 4 Comparison of link prediction of FELS-L
Dataset | AUC/% | ||
---|---|---|---|
Hhar3 | 96.43 | 97.30 | 97.42 |
Hhar10 | 95.13 | 96.17 | 96.38 |
Reut3 | 93.42 | 94.12 | 94.07 |
Reut10 | 84.04 | 83.94 | 83.39 |
Movie | 86.54 | 85.59 | 83.70 |
American | 79.88 | 80.52 | 80.29 |
[1] | 吴越, 王英, 王鑫, 等. 基于超图卷积的异质网络半监督节点分类[J]. 计算机学报, 2021, 44(11): 2248-2260. |
WU Y, WANG Y, WANG X, et al. Motif-based hypergraph convolution network for semi-supervised node classification on heterogeneous graph[J]. Chinese Journal of Computers, 2021, 44(11): 2248-2260. | |
[2] | LIU Y, SAFAVI T, DIGHE A, et al. Graph summarization methods and applications: a survey[J]. ACM Computing Sur-veys, 2018, 51(3): 1-34. |
[3] | QIU J, DONG Y, MA H, et al. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and Node2vec[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, Feb 5-9, 2018. New York: ACM, 2018: 459-467. |
[4] | DE RIDDER D, KOUROPTEVA O, OKUN O, et al. Super-vised locally linear embedding[C]// LNCS 2714: Proceedings of the Joint International Conference ICANN/ICONIP 2003, Istanbul, Jun 26-29, 2003. Berlin, Heidelberg: Springer, 2003: 333-341. |
[5] | BELKIN M, NIYOGI P. Laplacian Eigenmaps and spectral techniques for embedding and clustering[C]// Advances in Neural Information Processing Systems 14, Vancouver, Dec 3-8, 2001: 585-591. |
[6] | AHMED A, SHERVASHIDZE N, NARAYANAMURTHY S, et al. Distributed large-scale natural graph factorization[C]// Proceedings of the 22nd International Conference on World Wide Web, Rio de Janeiro, Brazil, May 13-17, 2013. New York: ACM, 2013: 37-48. |
[7] | CAO S, LU W, XU Q. Grarep: learning graph representa-tions with global structural information[C]// Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 19-23, 2015. New York: ACM, 2015: 891-900. |
[8] | OU M, CUI P, PEI J, et al. Asymmetric transitivity preser-ving graph embedding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1105-1114. |
[9] | PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710. |
[10] | TANG J, QU M, WANG M, et al. LINE: large-scale informa-tion network embedding[C]// Proceedings of the 24th Interna-tional Conference on World Wide Web, Florence, May 18-22, 2015. New York: ACM, 2015: 1067-1077. |
[11] | GROVER A, LESKOVEC J. Node2vec: scalable feature lear-ning for networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864. |
[12] | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. |
[13] | WANG D, CUI P, ZHU W. Structural deep network embed-ding[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1225-1234. |
[14] |
GUO S, WANG Y, YUAN H, et al. TAERT: triple-attentional explainable recommendation with temporal convolutional network[J]. Information Sciences, 2021, 567: 185-200.
DOI URL |
[15] | RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. Struc2vec: learning node representations from structural iden-tity[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 385-394. |
[16] | NAVLAKHA S, RASTOGI R, SHRIVASTAVA N. Graph summarization with bounded error[C]// Proceedings of the 2018 ACM SIGMOD International Conference on Manage-ment of Data, Vancouver, Jun 10-12, 2008. New York: ACM, 2008: 419-432. |
[17] | MACCIONI A, ABADI D J. Scalable pattern matching over compressed graphs via dedensification[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 1755-1764. |
[18] | ZHU L, GHASEMI-GOL M, SZEKELY P, et al. Unsuper-vised entity resolution on multi-type graphs[C]// LNCS 9981: Proceedings of the 15th International Semantic Web Confe-rence, Kobe, Oct 17-21, 2016. Cham: Springer, 2016: 649-667. |
[19] | LI C T, LIN S D. Egocentric information abstraction for heterogeneous social networks[C]// Proceedings of the 2009 International Conference on Advances in Social Network Ana-lysis and Mining, Athens, Jul 20-22, 2009. Washington: IEEE Computer Society, 2009: 255-260. |
[20] | SHAH N, KOUTRA D, ZOU T, et al. TimeCrunch: interp-retable dynamic graph summarization[C]// Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, Aug 10-13, 2015. New York: ACM, 2015: 1055-1064. |
[21] | JIN D, ROSSI R A, KOH E, et al. Latent network summa-rization: bridging network embedding and summarization[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anc-horage, Aug 4-8, 2019. New York: ACM, 2019: 987-997. |
[22] |
周才东, 曾碧卿, 王盛玉, 等. 结合注意力与卷积神经网络的中文摘要研究[J]. 计算机工程与应用, 2019, 55(8): 132-137.
DOI |
ZHOU C D, ZENG B Q, WANG S Y, et al. Chinese summa-rization research on combination of local attention and con-volutional neural network[J]. Computer Engineering and App-lications, 2019, 55(8): 132-137. | |
[23] | 田珂珂, 周瑞莹, 董浩业, 等. 基于编码器共享和门控网络的生成式文本摘要方法[J]. 北京大学学报(自然科学版), 2020, 56(1): 61-67. |
TIAN K K, ZHOU R Y, DONG H Y, et al. An abstractive summarization method based on encoder-sharing and gated network[J]. Acta Scientiarum Naturalium Universitatis Pekine-nsis, 2020, 56(1): 61-67. |
[1] | LI Guangli, YUAN Tian, LI Chuanxiu, WU Renzhong, ZHUO Jianwu, ZHANG Hongbin. Breast Mass Recognition Model via Deep-Level Pathological Information Mining [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 413-427. |
[2] | ZHAO Zeyuan, DAI Yongqiang. Improved Shuffled Binary Grasshopper Optimization Feature Selection Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1339-1349. |
[3] | WANG Yunxia, CAO Fuyuan, LING Zhaolong. Hybrid Local Causal Structure Learning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(4): 754-765. |
[4] | ZHAO Xueli, LU Guangyue, LV Shaoqing, ZHANG Pan. Attributed Bipartite Network Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 495-505. |
[5] | TU Jiping, QIAN Ye, WANG Wei, FAN Daoyuan, ZHANG Hanyu. Approach to Software Defect Features Selection Using Extended Bayesian Information Criterion [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 215-235. |
[6] | NI Peng, LIU Yangming, ZHAO Suyun, CHEN Hong, LI Cuiping. Dynamic Fuzzy Rough Feature Selection Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 236-243. |
[7] | DU Shishuai, QIU Tian, LI Lingqiao, HU Jinquan, ZHENG Anbing, FENG Yanchun, HU Changqin, YANG Huihua. Application of Multi-Layered Gradient Boosting Decision Trees in Pharmaceutical Classification [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 260-273. |
[8] | WANG Jinjie, LI Wei. Multi-Objective Feature Selection Method Based on Hybrid MI and PSO Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 83-95. |
[9] | XU Lei, HUANG Ling, WANG Changdong. Motif-Preserving Network Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1261-1271. |
[10] | ZHOU Hui, ZHAO Zhongying, LI Chao. Survey on Representation Learning Methods Oriented to Heterogeneous Information Network [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1081-1093. |
[11] | LIN Defu, WANG Jun, ZHANG Jiaxu, YING Wenhao, WANG Shitong. Novel Takagi-Sugeno Fuzzy System Modeling Method via Joint Sparse Learning Using Two Regularizations [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(6): 1016-1026. |
[12] | YANG Xiaocui, SONG Jiaxiu, ZHANG Xihuang. Link Prediction Algorithm Based on Network Representation Learning [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(5): 812-821. |
[13] | CHAO Xiuqin, LI Wei. Feature Selection Method Optimized by Artificial Bee Colony Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(2): 300-309. |
[14] | ZHANG Lei, QIAN Feng, ZHAO Shu, CHEN Jie, ZHANG Yanping. Network Representation Learning via Variational Auto-Encoder [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1733-1744. |
[15] | QIAN Wenbin, HUANG Qin, WANG Yinglong, YANG Jun. Feature Selection Algorithm in Multi-Label Incomplete Data [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1768-1780. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/